Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chung
KA=KH
Do đó: ΔBAK=ΔBHK
=>BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: KA=KH
=>K nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BK là đường trung trực của AH
=>BK\(\perp\)AH
B A K H C E
a. Xét tam giác vuông BKH và tam giác vuông BCA có:
+ BK = BC (gt)
+ B là góc chung
=> tam giác vuông BKH = tam giác vuông BCA (cạnh huyền + góc nhọn )
=> KH = AC ( 2 cạnh tương ứng )
b. Theo Cm ý a. ta có : tam giác vuông BKH = tam giác vuông BCA
=> BA = BH ( 2 cạnh tương ứng ) (*)
Xét tam giác vuông BEH và tam giác vuông BEA có:
+ BA = BH ( theo * )
+ Cạnh BE chung
=> Tam giác vuông BEH = tam giác vuông BEA
=> góc ABE = góc HBE ( 2 góc tương ứng )
c.tự làm nhé :)
c. Theo Cm ý b. ta có Tam giác vuông BEH = tam giác vuông BEA
=> EA = EH ( 2 cạnh tương ứng ) (**)
Xét tam giác vuông AEK và tam giác vuông HEC có :
+ EA = EH ( theo ** )
+ góc AEK = góc HEC ( đối đỉnh )
=> tam giác vuông AEK = tam giác vuông HEC ( cạnh góc vuông + góc nhọn )
=> EK = EC ( 2 cạnh tương ứng ) (***)
Xét tam giác AEK có góc A là góc vuông
=> góc A là góc lớn nhất trong tam giác
Mà EK đối diện với góc A
=> EK là cạnh lớn nhất trong tam giác AEK
=> EK > EA
Lại có : EK = EC ( theo *** )
=> EC > EA
=> AE < EC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
=( bn nói có vẻ khinh người quá đấy, bài này cả olm ko ai làm đc :V há há-thế giới của bn nhỏ thật >:
A B C H D K E
a) \(\Delta ABHcó: \widehat{A}+\widehat{B}+\widehat{H}=180^o\)
\(\text{mà }\widehat{B}=60^o,\widehat{H}=90^o\Rightarrow\widehat{A}=30^o\text{hay}\widehat{HAB}=30^o\)
b) xét tam giác KDA và tam giác KHA, ta có:
AK là cạnh chung
AH=AD(gt)
DAK=KAH(gt)
=> tam giác KDA = tam giác KHA(c.g.c)
=> KH=KD( cặp cạnh tương ứng)
c) câu c sai đề, ib vs mk lại đề đi-rồi giải tiếp cho =)
a) vì M là tđ AB -> AM=1/2AB=5cm
N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H
có góc AMH + góc BMK ( đối đỉnh )
AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)
d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)
tam giác ABC có góc A vuông
ta có : BC2 = AB2 +AC2 ( định lý pytago )
thay BC2 = 102 + 242
=> BC=26 cm
ta lại có : M là trung điểm của AB => AM=1/2AB=1/2 . 10 =5 cm
tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm
tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )
thay MN2 = 52 + 122
=> MN = 13 cm
Vậy MN = 13 cm
A B C H 60 0 D K E
Giải: a) Xét t/giác HAB có góc H = 900 (AH \(\perp\)BC)
=> góc HAB + góc B = 900 (t/c của 1 \(\Delta\))
=> góc HAB = 900 - góc B = 900 - 600 = 300
b) Xét t/giác ADK và t/giác AHK
có AD = AH (gt)
góc DAK = góc KAH (gt)
AK :chung
=> t/giác ADK = t/giác AHK (c.g.c)
=> DK = HK (hai cạnh tương ứng)
c) tự làm
A B C D K
Do K là trung điểm cạnh huyền BC nên AK là đường trung tuyến ứng với cạnh huyền. Suy ra KA = KB= KC.
Do KD = KA nên KA = KB = KC = KD, hay AD = BC.
Xét tam giác KAC có KA = KC nên nó là tam giác cân. Vậy thì \(\widehat{KCA}=\widehat{KAC}\)
Xét tam giác ABC và CDA có: AD = BC, AC chung, \(\widehat{KCA}=\widehat{KAC}\) nên \(\Delta ABC=\Delta CDA\left(c-g-c\right)\Rightarrow\widehat{DCA}=\widehat{BAC}=90^o\)
Hay \(DC⊥AC.\)
a, xét tam giác ABM và tam giác ACM có : AM chung
góc ABM = góc ACM = 90
AB = AC do tam giác ABC cân tại A (Gt)
=> tam giác ABM = tam giác ACM (ch-cgv)
=> góc BAM = góc CAM (đn) mà AM nằm giữa AB và AC
=> AM là pg của góc BAC (đn)
b, Tam giác ABC cân tại A (gt)
AM là pg của góc BAC (câu a)
=> AM đồng thời _|_ với BC (đl)