Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
a) Xét \(\Delta AMB\) và \(\Delta DMC\) có :
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(BM=MC\left(gt\right)\)
=> \(\Delta AMB\) = \(\Delta DMC\) (c.g.c)
b) Xét \(\Delta AMC\) và \(\Delta BMD\) có :
\(BM=MC\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
\(AM=MC\left(gt\right)\)
=> \(\Delta AMC\) =\(\Delta BMD\) (c.g.c)
Mà ta có : \(\left\{{}\begin{matrix}\Delta ABC=\Delta AMB+\Delta AMC\\\Delta BDC=\Delta BMD+\Delta DMC\end{matrix}\right.\)
=> \(\Delta ABC=\Delta BDC\)
Có thêm : \(\widehat{BAM}+\widehat{CAM}=90^o\)
=> \(\widehat{DCM}+\widehat{ACM}=90^o\)
Do đó : \(AC\perp BC\left(đpcm\right)\)
c) Theo giả thuyết có :
\(\Delta ABC\) vuông tại A
Mà có : \(BM=MC\left(gt\right)\)
=> AM là đường trugn tuyến trong tam giác vuông
\(\Rightarrow AM=\dfrac{1}{2}BC\) (Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> đpcm
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
A B C M D
Vì M là trung điểm của AD
=> BM = DM
AM = CM
Xét tam giác AMB và tam giác DMC có :
BM = DM ( cmt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
AM = CM ( cmt )
=> Tam giác AMB = tam giác DMC ( c-g-c )
b) Vì tam giác AMB = tam giác DMC ( cmt )
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\) ( 2 góc tương ứng )
Mà 2 góc này lại ở vị trí so le trong
=> BA // DC
Vì \(BA\perp DC\)
\(\Rightarrow DC\perp AC\)
c) Xét tam giác ADM và tam giác DCM có :
BA = DC ( cmt )
\(\widehat{BAC}=\widehat{DCA}=90^o\)
DM cạnh chung
=> tam giác ADM = tam giác DCM ( c-g-c )
\(\Rightarrow AD=BC\)
\(\Rightarrow2AM=BC\)
\(AM=\frac{1}{2}BC\)
\(\Rightarrowđpcm\)
a) Xét \(\Delta\)BMC và \(\Delta\)DMA có:
BM = DM (gt)
\(\widehat{BMC}\) = \(\widehat{DMA}\) (đối đỉnh)
MC = MA (suy từ gt)
=> \(\Delta\)BMC = \(\Delta\)DMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì \(\Delta\)BMC = \(\Delta\)DMA (câu a)
nên \(\widehat{BCA}\) = \(\widehat{CAD}\) (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét \(\Delta\)DCA và \(\Delta\)BAC có:
CA chung
\(\widehat{CAD}\) = \(\widehat{ACB}\) ( cm trên)
DA = BC (cm trên)
=> \(\Delta\)DCA = \(\Delta\)BAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\) = 90 độ (góc t ư)
Do đó CD \(\perp\) AC