K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

A B C M D

Vì M là trung điểm của AD 

=> BM = DM 

AM = CM 

Xét tam giác AMB và tam giác DMC có :

BM = DM ( cmt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

AM = CM ( cmt )

=> Tam giác AMB = tam giác DMC ( c-g-c )

b) Vì tam giác AMB = tam giác DMC ( cmt )

 \(\Rightarrow\widehat{BAM}=\widehat{MDC}\) ( 2 góc tương ứng )

Mà 2 góc này lại ở vị trí so le trong 

=> BA // DC 

Vì \(BA\perp DC\)

\(\Rightarrow DC\perp AC\)

c) Xét tam giác ADM và tam giác DCM có :

BA = DC ( cmt )

\(\widehat{BAC}=\widehat{DCA}=90^o\)

DM cạnh chung

=> tam giác ADM = tam giác DCM ( c-g-c )

\(\Rightarrow AD=BC\)

\(\Rightarrow2AM=BC\)

\(AM=\frac{1}{2}BC\)

\(\Rightarrowđpcm\)

24 tháng 10 2016

Ta có hình vẽ sau:

 

A B C D M 1 2

GT: ΔABC ; \(\widehat{A}\) = 90o

MB = MC ; MA = MD

KL: a) ΔAMB = DMC

a) Xét ΔAMB và ΔDMC có:

MA = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)

MB = MC (gt)

\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)

 

24 tháng 10 2016

ý b vs ý c mk chua nghĩ ra

hỳ

a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:

         AM = MD (gt)

         \(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)

         MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

b) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

c) Xét \(\Delta AMB\)và \(\Delta AMC\)có:

        AB = AC (gt)

         AM là cạnh chung

        MB = MC (M là trung điểm của BC)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp BC\)

d) Mk ko hiểu đề bài cho lắm!!!!!

7 tháng 12 2018

MÌNH ĐANG CẦN GẤP GIÚP VỚI 

7 tháng 12 2018

A C B M D 1 1 H K H

a) Xét ▲AMC và ▲ DMC có :

AM = MD ( gt )

\(\widehat{M}\)chung 
AB = CD ( hình vẽ )

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Vì \(\widehat{B_1}=\widehat{C_1}\) mà 2 góc này ở vị trí so le trong của cạnh BC 

=> AC // BD 
c) Vì HK = HM + MK 

=> M là trung điểm của HK

Câu c) không đúng đâu UwU  Cái đoạn gạch gạch mình vẽ sai không sửa được bạn vẽ hình đừng vẽ theo :v 

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

2 tháng 1 2019

a) Chứng minh tam giac AMB = tam giac DMC

Xét tam giác MAB và tam giác MDC, có

- MA = MD (M là trung điểm AD)

- MB = MD (M là trung điểm BD) 

- Góc M đối nhau

=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh)  (đpcm)

b) Chứng minh DC vuông góc AC

Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)

=> góc A1 + góc A2 = 90 độ

mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)

=> góc ADC + góc A2 = 90 độ

Xét tam giác CAD,

có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ

=> góc ACD = 90 độ

=> tam giác DAC vuông tại C

Ta có DC vuông góc AC tại C

và BA vuông góc AC tại A

=> BA // DC (đpcm)

c) AM = 1/2BC

Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)

Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:

Xét tứ giác ABDC có:

- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)

- DC // BA

=> tứ giác ABDC là hình bình hành

và có góc A vuông

=> tứ giác ABDC là hình chữ nhật

=> 2 đường chéo của hình chữ nhật là AD = BC

mà M là trung điểm của AD và BC

=> AM = 1/2 BC (đpcm)

4 tháng 12 2016

Bạn tự vẽ hình nha:

vẽ như đề bài yêu cầu xogn rồi nối D vs C

Xét tam giác AMB và tam giác DMC có:

BM=CM    (gt)

góc BMC = góc DMC

AM=DM    (gt)

=> tam giác AMB= tam giác DMC (c.g.c)

b,Từ câu a

=> góc BAM=góc MDC (2 góc tương ứng)

Mà 2 góc trên nằm ở vị trí so le trong

=> BA song song với DC

Vì BA vuông góc với AC

=> DC vuông góc với AC

=> DPCM

c,Từ câu a

=> BA=DC

Xét tam giác ABM và tam giác DCM có:

BA=DC

góc BAC= góc DCA=90 độ

AC: cạnh chung

=> tam giác ABM= tam giác DCM (c.g.c)

=> AD=BC

=> 2AM=BC

=> AM=1/2BC

=> DPCM

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy