K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

24 tháng 11 2023

Phần tính diện tích ∆ABC cậu lộn AB =13cm roii í phải là 1/2 × 12 × 5 = 30 cm  nha

8 tháng 1 2020

hình bạn tự vẽ nhé

a) Xét tứ giác ADBC có AB giao DC tại I là trung điểm của mỗi đường

\(\Rightarrow ADBC\)là hình bình hành (dhnb)

b)  Xét tam giác ABC có: 

I là trung điểm của AB (gt) , M là trung điểm của BC(gt)

\(\Rightarrow IM\)là đường trung bình tam giác ABC

\(\Rightarrow IM//AC\left(tc\right)\)

Mà \(AB\perp AC\)

\(\Rightarrow IM\perp AB\)( từ vuông góc đến song song )

c) Áp dụng định lý Py-ta-go vào tam giác ABC ta được:

\(AB^2+AC^2=BC^2\)

\(AB^2+5^2=13^2\)

\(AB^2=144\)

\(\Rightarrow AB=12\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.12.5=30\left(cm^2\right)\)

Vậy ...

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của BC

I là trung điểm của AB

Do đó: MI là đường trung bình

=>MI//AC

hay MI⊥AB

c: Xét tứ giác ACBD có

I là trung điểm của AB

I là trung điểm của CD

Do đó: ACBD là hình bình hành

6 tháng 2 2022

a/ Áp dụng Pytago vào ΔABC, ∠A=90 độ

⇒AB²=BC²-AC²

⇒AB²= 13²-5²

⇒AB²=144

⇒AB=12 (cm)

Vậy diên tích tam giác ABC:

SΔABC=1212 ×AB×AC=1212 ×12×5=30 (cm²)

b/

b/ Ta có :

IB=IA(gt)

MB=MC (gt)

⇒IM là đường trung bình ΔABC

⇒IM // AC

Và ∠A =90 độ

⇒∠BIM = 90 độ ( đồng vị)

c)

Ta có:

IB=IA (gt)

IC=ID (gt)

⇒ Tứ giác ADBC là hình bình hành ( Theo tính chất hình bình hành)

25 tháng 12 2014

a)ID=IC ;IA=IB => Tứ giác ADBC là hình bình hành.

b)MB=MC

IB=IA

=>MI là đường trung bình của tam giác ABC

=>MI//AC

=>góc BIM=góc A = 90 độ (đồng vị)

hay MI vuông góc với AB tại I

27 tháng 12 2014

Câu c nè bạn:

ÁP dụng định lý Py-ta-go vào tam giác vuông ABC có:

AB2+AC2=BC2

Và bạn sẽ tính ra được BC=13

Vì tam giác ABC là tam giác vuông lại có AM là đường trung tuyến nên trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền 

SUy ra: AM=1/2.BC=1/2.13=6.5

 

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a: Xét tứ giác ADBC có

I là trung điểm chung của AB và DC

nên ADBC là hình bình hành

b: Xét ΔBAC có BI/BA=BK/BC

nên IK//AC

c: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot5=1.5\cdot5=7.5\left(cm^2\right)\)

6 tháng 1 2023

có hình ko bạn