K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

đồ khùng mày tin tao chịt vào mông mày hay ko trường nào lớp mấy

6 tháng 11 2016

bn j ơi chửi kinh thế

6 tháng 11 2016

a)nối E với M

xét \(\Delta ABC\)có:

CE=CA(gt)

CM=MB(gt)

=>EM là đường trung bình \(\Delta ABC\)

=>EM//AB; EM=1/2AB(1)

Xét \(\Delta BCD\)có:

CE=EA(gt)

MA=MD(do D đối xứng A qua M)

=>EM  là đường trung bình \(\Delta BCD\)

=>EM//CD; EM=1/2CD (2)

Từ (1) và(2)=>AB//CD(vì cùng // với EM)

                      AB=CD(vì AB=1/2EM; CE=1/2EM)

=>Tứ giác ABDC là hình bình hành có A=\(90^0\)

=>Hình bình hành ABDC là hình chữ nhật

b)có EM là đg trung bình \(\Delta ABC\)(cmt)

=>EM=1/2AB

hay AB=2EM

c)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

AM\(\perp\)DE

=>\(\widehat{AED}+\widehat{MAC}=90^0\)

mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\) 

và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{ABH}+\widehat{MAC}=90^0\)

mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)

\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

mà MA=MC

nên MB=MC

=>M là trung điểm của BC

( Hình em tự vẽ nhé! )

Lấy O là giao điểm DE và HA

+ Xét tứ giác ADHE có:

\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)

=> ADHE là hình chữ nhật

=> O là trung điểm AH (t/c)

     O là trung điểm DE (t/c)

=> OA = OH = OD = OE 

=> ΔAOE cân tại O

=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)

+ Xét ΔABH vuông tại H

=> \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)

=> \(\widehat{ABH}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{OEH}\)

\(\widehat{ABH}=\widehat{AEO}\)

+ Xét ΔADE và ΔACB có:

\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{AED}=\widehat{ABC}\)

=> ΔADE \(\sim\) ΔACB (g.g)

=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)

Lấy I là giao điểm AM và DE 

+ Xét ΔAIE vuông tại I 

=> \(\widehat{IAE}+\widehat{IEA}=90^o\)

Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{IEA}=\widehat{MAB}\)

Mà \(\widehat{IEA}=\widehat{ABC}\)

=> \(\widehat{ABC}=\widehat{BAM}\)

=> ΔABM cân tại M

=> MA = MB (t/c)

+ Xét ΔAID vuông tại I

=> \(\widehat{IDA}+\widehat{IAD}=90^o\)

Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)

=> \(\widehat{IDA}=\widehat{MAC}\)

Mà \(\widehat{IDA}=\widehat{ACM}\)

=> \(\widehat{MAC}=\widehat{ACM}\)

=> ΔMAC cân tại M

=> MA = MC (t/c)

Mà MA = MB 

=> MB = MC

=> M là trung điểm BC.

19 tháng 11 2018

Nhờ thầy cô và các bạn giúp gấp em câu d bài trên