Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đồ khùng mày tin tao chịt vào mông mày hay ko trường nào lớp mấy
a)nối E với M
xét \(\Delta ABC\)có:
CE=CA(gt)
CM=MB(gt)
=>EM là đường trung bình \(\Delta ABC\)
=>EM//AB; EM=1/2AB(1)
Xét \(\Delta BCD\)có:
CE=EA(gt)
MA=MD(do D đối xứng A qua M)
=>EM là đường trung bình \(\Delta BCD\)
=>EM//CD; EM=1/2CD (2)
Từ (1) và(2)=>AB//CD(vì cùng // với EM)
AB=CD(vì AB=1/2EM; CE=1/2EM)
=>Tứ giác ABDC là hình bình hành có A=\(90^0\)
=>Hình bình hành ABDC là hình chữ nhật
b)có EM là đg trung bình \(\Delta ABC\)(cmt)
=>EM=1/2AB
hay AB=2EM
c)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
AM\(\perp\)DE
=>\(\widehat{AED}+\widehat{MAC}=90^0\)
mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\)
và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{ABH}+\widehat{MAC}=90^0\)
mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
mà MA=MC
nên MB=MC
=>M là trung điểm của BC
( Hình em tự vẽ nhé! )
Lấy O là giao điểm DE và HA
+ Xét tứ giác ADHE có:
\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)
=> ADHE là hình chữ nhật
=> O là trung điểm AH (t/c)
O là trung điểm DE (t/c)
=> OA = OH = OD = OE
=> ΔAOE cân tại O
=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)
+ Xét ΔABH vuông tại H
=> \(\widehat{BAH}+\widehat{ABH}=90^o\)
Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)
=> \(\widehat{ABH}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{OEH}\)
\(\widehat{ABH}=\widehat{AEO}\)
+ Xét ΔADE và ΔACB có:
\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{AED}=\widehat{ABC}\)
=> ΔADE \(\sim\) ΔACB (g.g)
=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)
Lấy I là giao điểm AM và DE
+ Xét ΔAIE vuông tại I
=> \(\widehat{IAE}+\widehat{IEA}=90^o\)
Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{IEA}=\widehat{MAB}\)
Mà \(\widehat{IEA}=\widehat{ABC}\)
=> \(\widehat{ABC}=\widehat{BAM}\)
=> ΔABM cân tại M
=> MA = MB (t/c)
+ Xét ΔAID vuông tại I
=> \(\widehat{IDA}+\widehat{IAD}=90^o\)
Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)
=> \(\widehat{IDA}=\widehat{MAC}\)
Mà \(\widehat{IDA}=\widehat{ACM}\)
=> \(\widehat{MAC}=\widehat{ACM}\)
=> ΔMAC cân tại M
=> MA = MC (t/c)
Mà MA = MB
=> MB = MC
=> M là trung điểm BC.