Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng các tỉ số lượng giác cho tam giác vuông ABH để tính sinB, rồi từ đó suy ra sinC
b, Áp dụng hệ thức lượng về cạnh góc vuông và hình chiếu lên cạnh huyền trong tam giác vuông ABC để tính AB. Sau đó làm tương tự câu a)
a) Ta có: \(cos\alpha=\dfrac{12}{13}\)
Mà: \(sin^2\alpha+cos^2a=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow sin\alpha=\dfrac{5}{13}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)
b) Ta có: \(cos\alpha=\dfrac{3}{5}\)
Mà: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)
2:
a: BC=căn 16^2+12^2=20cm
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=3/5
cos B=sin C=AB/BC=4/5
tan B=cot C=3/5:4/5=3/4
cot B=tan C=1:3/4=4/3
b: AH=căn 13^2-5^2=12cm
Xét ΔAHC vuông tại H có
sin C=AH/AC=12/13
=>cos B=12/13
cos C=HC/AC=5/13
=>sin B=5/13
tan C=12/13:5/13=12/5
=>cot B=12/5
tan B=cot C=1:12/5=5/12
c: BC=3+4=7cm
AB=căn BH*BC=2*căn 7(cm)
AC=căn CH*BC=căn 21(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=căn 21/7
sin C=cos B=AB/BC=2/căn 7
tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21
cot B=tan C=1/căn 21/2=2/căn 21
a) Xét ΔAHB có ^AHB = 900 ( AH ⊥ BC ) => ΔAHB vuông tại H
Khi đó : \(\sin B=\sin\widehat{ABH}=\frac{AH}{AB}=\frac{5}{13};\cos B=\cos\widehat{ABH}=\frac{BH}{AB}=\frac{\sqrt{AB^2-AH^2}\left(pythagoras\right)}{AB}=\frac{12}{13}\)
ΔABC vuông tại A => ^B + ^C = 900 => \(\sin C=\cos B=\frac{12}{13}\)
b) Áp dụng hệ thức lượng trong tam giác vuông cho ΔABC vuông tại A ta có :
\(AH^2=BH\cdot HC\Rightarrow AH=\sqrt{BH\cdot HC}=2\sqrt{3}\)
cmtt như a) ta có được ΔAHC vuông tại H
Khi đó : \(\sin C=\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{\sqrt{AH^2+HC^2}}=\frac{\sqrt{21}}{7};\cos C=\cos\widehat{ACH}=\frac{CH}{AC}=\frac{CH}{\sqrt{AH^2+HC^2}}=\frac{2\sqrt{7}}{7}\)ΔABC vuông tại A => ^B + ^C = 900 => \(\sin B=\cos C=\frac{2\sqrt{7}}{7}\)
a: BH=0,5dm=5cm
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH^2=13^2-5^2=12^2
=>AH=12cm
sin B=AH/AB=12/13
sin C=sin HAC=BH/AB=5/13
b: ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>AH=2*căn 3(cm)
BC=3+4=7cm
\(AB=\sqrt{BH\cdot BC}=\sqrt{21}\left(cm\right)\)
\(AC=\sqrt{4\cdot7}=2\sqrt{7}\left(cm\right)\)
Xét ΔABC vuông tại A có
sin C=AB/BC=căn 21/7
sin B=AC/BC=2/căn 7
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)
a. \(BC^2=AB^2+AC^2\) nên ABC vuông tại A
b. Hệ thức lượng: \(AH=\dfrac{AB\cdot AC}{BC}=2,4\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
Xét tam giác ABC vuông tại A có BC = BH + CH = 7cm
Theo hệ thức lượng trong tam giác vuông ta có:
Đáp án cần chọn là: A
a: AH=căn 13^2-5^2=12cm
CH=12^2/5=28,8cm
BC=28,8+5=33,8cm
AC=căn 28,8*33,8=31,2cm
b: AH=căn 3*4=2căn 3(cm)
AB=căn 3*7=căn 21(cm)
AC=căn 4*7=2căn 7(cm)
c: CH=4^2/3=16/3cm
AB=căn 4^2+3^2=5cm
AC=căn 16/3*25/3=20/3(cm)