K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

\(\Delta ABC\bot A\\ \Rightarrow\widehat{B}+\widehat{C}=90^0\\ \Rightarrow4\widehat{C}=90^0\\ \Rightarrow\widehat{C}=22,5^0\\ \Rightarrow\widehat{B}=67,5^0\)

15 tháng 12 2021

tham khảo bài làm 

7 tháng 3 2022

1.

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{A}+\widehat{C}+\widehat{C}=180^0\)

\(\widehat{A}=180^0-2.65^0\)

\(\widehat{A}=50^0\)

2.

Áp dụng định lý pitago, ta có:

\(DF^2=DE^2+EF^2\)

\(\Rightarrow EF=\sqrt{DF^2-DE^2}=\sqrt{17^2-8^2}=\sqrt{225}=15cm\)

Ta có:

\(DF>EF>DE\)

\(\Rightarrow\widehat{E}>\widehat{D}>\widehat{F}\)

7 tháng 3 2022

có phải vẽ hình ko ạ

 

26 tháng 1 2016

a) Ap dụng định lí Py - ta - go vào tam giác vuông ABC có

BC^2 = AB^2 + AC^2

13^2 = 5^2  + AC^2

AC^2 = 13^2 - 5^2

AC^2 = 169 - 25

AC^2 = 144

AC = 12 cm

b) Xét tam giác vuông ABE và tam giác vuông DBE có :

 BE cạnh huyền chung

AB = DB  ( gt )

Suy ra tam giác vuông ABE = tam giác vuông DBE ( cạnh huyền - góc nhọn )

Suy ra góc ABE = góc DBE (2 góc tương ứng )

Suy ra BE là tia phân giác cuả góc B

 

 

 

 

20 tháng 3 2018

có hình nữa nha

20 tháng 3 2018

A B C

Theo định lí Pitago,ta có:

\(BC^2=10^2=100=AB^2+AC^2=AB^2+6^2=AB^2+36\)

\(\Rightarrow AB^2=100-36=64\)

\(\Rightarrow AB=8\)

4 tháng 8 2020

a)

Ta có: góc B + góc C = 90 độ 

Mà góc B = 50 độ

\(\Rightarrow\) góc C = 90 độ - 50 độ = 40 độ

b)

Xét Δ ABD và Δ EBD có:

AB = EB (gt)

góc ABD = góc EBD (gt)

chung BD

\(\Rightarrow\) Δ ABD = Δ EBD (c-g-c)

c)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) góc BAD = góc BED

Mà góc BAD = 90 độ nên góc BED = 90 độ

\(\Rightarrow\)DE \(\perp\) BC

d)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) AD = ED

Xét Δ ADK và Δ EDC có:

góc DAK = góc DEC = 90 độ

AD = ED (cmt)

góc ADK = góc EDC (đ²)

\(\Rightarrow\) Δ ADK = Δ EDC (cgv - gn)

\(\Rightarrow\) DK = DC và AK = EC ( 2 cạnh tương ứng )

e)

Ta có:

BA = BE (gt)

AK = EC (câu d)

\(\Rightarrow\) BA + AK = BE + EC \(\Rightarrow\) BK = BC \(\Leftrightarrow\) Δ BKC cân tại B (định nghĩa)

Mà BD là phân giác góc CBK

\(\Rightarrow\) BD vừa là phân giác vừa là đường cao của Δ BKC

\(\Rightarrow\) BD ⊥ CK

#Tiểu Cừu

4 tháng 8 2020

A B C D E k 1 2 O

a) XÉT  \(\Delta ABD\)VÀ \(\Delta EBD\)

BD LÀ CẠNH CHUNG

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

AB = BE (GT)

=> \(\Delta ABD\)=\(\Delta EBD\)(C-G-C)

C)  VÌ  \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(\widehat{BAD}=\widehat{BED}=90^o\)

=> DE VUÔNG GÓC VỚI BC (ĐPCM )

D) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT )

=> AD = ED ( HAI CẠNH TƯƠNG ỨNG )

XÉT \(\Delta ADK\)VÀ \(\Delta EDC\)CÓ 

\(\widehat{KAD}=\widehat{CED}=90^o\)

AD = ED (CMT)

\(\widehat{ADK}=\widehat{EDC}\left(Đ^2\right)\)

=> \(\Delta ADK\)=\(\Delta ADK\)(G-C-G)

=> DK = DC (ĐPCM) 

=> AK = EC (ĐPCM)

e ) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=>\(\widehat{ADB}=\widehat{EDB}\)

TA CÓ 

\(\widehat{ADB}=\widehat{D_1}\)(ĐỐI DỈNH)

\(\widehat{EDB}=\widehat{D_2}\)(ĐỐI ĐỈNH)

MÀ  \(\widehat{ADB}=\widehat{EDB}\)

=> \(\widehat{D_1}=\widehat{D_2}\)

GỌI O LÀ GIAO ĐIỂM CỦA BD LÀ KC

XÉT \(\Delta KDO\)VÀ \(\Delta CDO\)CÓ 

\(KD=CD\left(cmt\right)\)

\(\widehat{D_1}=\widehat{D_2}\)(CMT)

DO LÀ CẠNH CHUNG

=> \(\Delta KDO\)=\(\Delta CDO\)(C-G-C)

=> \(\widehat{KOD}=\widehat{COD}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{KOD}=\widehat{COD}=\frac{180^o}{2}=90^o\)

\(\Rightarrow BD\perp CK\left(đpcm\right)\)