Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=8^2-4^2=48\)
hay \(AC=4\sqrt{3}cm\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\frac{AB}{BC}=\frac{4}{8}=\frac{1}{2}\)
Vậy: \(AC=4\sqrt{3}cm\); \(\sin\widehat{C}=\frac{1}{2}\)
b) Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\frac{1}{2}\)(cmt)
hay \(\widehat{C}=30^0\)
Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{B}+30^0=90^0\)
hay \(\widehat{B}=60^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot8=4\cdot4\sqrt{3}=16\sqrt{3}\)
hay \(AH=2\sqrt{3}cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow\left(2\sqrt{3}\right)^2+HB^2=4^2\)
\(\Leftrightarrow HB^2=4^2-\left(2\sqrt{3}\right)^2=16-12=4\)
hay BH=2cm
Vậy: \(\widehat{C}=30^0\); \(\widehat{B}=60^0\); \(AH=2\sqrt{3}cm\); BH=2cm
A B C H K D
Ta có
\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)
\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)
Xét tg vuông ABC có
\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\)
Xét tg vuông ABD có
\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)
Thay (1) và (2) vào (*)
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)
Xét tg BKC có
\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)
Xét tg vuông ABK có
\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có
\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)
Thay (3) vào (**) ta có
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
Bài 1:
a)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2-AC^2}=\sqrt{10^2-8^2}=6\) (cm)
\(S_{ABC}=\frac{AC.CB}{2}=\frac{AB.CK}{2}\Rightarrow CK=\frac{AC.CB}{AB}=\frac{8.6}{10}=4,8\) (cm)
Áp dụng định lý Pitago:
\(BK=\sqrt{CB^2-CK^2}=\sqrt{6^2-4,8^2}=3,6\) (cm)
\(AK=BA-BK=10-3,6=6,4\) (cm)
b)
\(KH\perp BC, KI\perp AC\Rightarrow \widehat{KHC}=\widehat{KIC}=90^0=\widehat{HCI}\)
Tứ giác $KHCI$ có 3 góc vuông nên là hình chữ nhật.
c)
Xét tam giác $CHK$ và $CKB$ có:
Góc $C$ chung
\(\widehat{CHK}=\widehat{CKB}=90^0\)
\(\Rightarrow \triangle CHK\sim \triangle CKB(g.g)\)
\(\Rightarrow \frac{CH}{CK}=\frac{CK}{CB}\Rightarrow CH.CB=CK^2(1)\)
Hoàn toàn tương tự: \(\triangle CKI\sim \triangle CAK(g.g)\)
\(\Rightarrow \frac{CK}{CA}=\frac{CI}{CK}\Rightarrow CA.CI=CK^2(2)\)
Từ \((1);(2)\Rightarrow CH.CB=CA.CI\) (đpcm)
Bài 1:
d)
Vì \(HK\parallel AC\Rightarrow \frac{BH}{BK}=\frac{BC}{BA}\Rightarrow BH=\frac{BK.BC}{AB}\) (định lý Ta-let)
Tương tự: \(\frac{AI}{AK}=\frac{AC}{AB}\Rightarrow AI=\frac{AK.AC}{AB}\)
\(\Rightarrow \frac{AI}{BH}=\frac{AK}{BK}.\frac{AC}{BC}\)
Xét tam giác $BKC$ và $BCA$ có:
\(\left\{\begin{matrix} \text{góc B chung}\\ \widehat{BKC}=\widehat{BCA}=90^0\end{matrix}\right.\Rightarrow \triangle BKC\sim \triangle BCA(g.g)\)
\(\Rightarrow \frac{BK}{BC}=\frac{BC}{BA}\Rightarrow BK=\frac{BC^2}{BA}\) (cái này là công thức hệ thức lượng quen thuộc, mình chỉ chứng minh lại thôi nhé)
Tương tự: \(AK=\frac{AC^2}{AB}\)
\(\Rightarrow \frac{AK}{BK}=\frac{AC^2}{BC^2}(4)\)
Từ \((3);(4)\Rightarrow \frac{AI}{BH}=\frac{AC^2}{BC^2}.\frac{AC}{BC}=\left(\frac{AC}{BC}\right)^3\) (đpcm)
e)
Áp dụng những công thức thu từ phần d:
\(AB.BH.AI=AB.\frac{BK.BC}{BA}.\frac{AK.AC}{AB}=\frac{AK.BK.BC.AC}{AB}\)
Mà \(AK=\frac{AC^2}{AB}; BK=\frac{BC^2}{AB}\Rightarrow AB.BH.AI=\left(\frac{AC.BC}{AB}\right)^3\)
\(=\left(\frac{2S_{ABC}}{AB}\right)^3=CK^3\) (đpcm)
f)
Ta có: \(S_{KHI}=\frac{KH.KI}{2}=\frac{KM.HI}{2}\)
\(\Rightarrow KM=\frac{KH.KI}{HI}\Rightarrow KM^2=\frac{KH^2.KI^2}{HI^2}\)
\(\Rightarrow \frac{1}{KM^2}=\frac{HI^2}{KH^2.KI^2}=\frac{KH^2+KI^2}{KH^2.KI^2}=\frac{1}{KI^2}+\frac{1}{KH^2}\) (Pitago)
Mà theo phần b ta cm được $KHCI$ là hcn nên \(KI=CH; KH=CI\)
\(\Rightarrow \frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\) (đpcm)
bạn ơi
tấm đầu mình nhìn không rõ chữ
bạn chụp lại đc k ạ