Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
b: Ta có: AEMFlà hình chữ nhật
=>AM cắt EF tại trung điểm của mỗi đường và AM=EF
=>O là trung điểm chung của AM và EF
K đối xứng M qua AC
=>AC vuông góc MK tại trung điểm của MK
ta có: AC\(\perp\)MK
AC\(\perp\)MF
MK,MF có điểm chung là M
Do đó: M,K,F thẳng hàng
=>F là trung điểm của MK
Xét ΔABC có MF//AB
nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)
mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)
nên \(MK=AB\)
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
c: Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có AC\(\perp\)MK
nên AMCK là hình thoi
=>AK//CM và CA là phân giác của góc KCM
=>AK//CB
Xét tứ giác ABCK có AK//BC
nên ABCK là hình thang
Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)
=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên BC=2AM=10(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)
\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)DB tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC