K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: Ta có: AEMFlà hình chữ nhật

=>AM cắt EF tại trung điểm của mỗi đường và AM=EF

=>O là trung điểm chung của AM và EF

K đối xứng M qua AC

=>AC vuông góc MK tại trung điểm của MK

ta có: AC\(\perp\)MK

AC\(\perp\)MF

MK,MF có điểm chung là M

Do đó: M,K,F thẳng hàng

=>F là trung điểm của MK

Xét ΔABC có MF//AB

nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)

mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)

nên \(MK=AB\)

Xét tứ giác ABMK có

AB//MK

AB=MK

Do đó: ABMK là hình bình hành

=>AM cắt BK tại trung điểm của mỗi đường

mà O là trung điểm của AM

nên O là trung điểm của BK

=>B,O,K thẳng hàng

c: Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

=>AK//CM và CA là phân giác của góc KCM

=>AK//CB

Xét tứ giác ABCK có AK//BC

nên ABCK là hình thang

Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)

=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)

mà \(\widehat{ABC}+\widehat{ACB}=90^0\)

nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên BC=2AM=10(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 5 2017

A D E C I B J H K M O

  1. vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
  2. I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
  3. Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)