Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình ảnh chỉ mang t/c minh họa
a,Tam giác ABD vuông cân => \(\widehat{BAD}=\widehat{ABD}=45^{o}\)
Tam giác ACE vuông cân => \(\widehat{CAE}=\widehat{ACE}=45^{o}\)
=>\(\widehat{DAE}=\widehat{BAD}+\widehat{A}+\widehat{CAE}=45^{o}+90^{o}+45^{o}=180^{o}\)
=> 3 điểm A,D,E thẳng hàng
\(b, cm\Delta BID=\Delta AID=>\widehat{BID}=\widehat{AID}=90^{o}\\ =>\widehat{BIM}=\widehat{AIM}=90^{o}\\ cm \ tg \ tự \ ta \ có: \widehat{AKM}=\widehat{CKM}=90^{o}\\ \)
=>IAKM là hcn
c,Thep phần b có IAKM là hcn=> \(\widehat{DME}=90^{o}\)
Và \(\Delta BID=\Delta AID=>AI=BI\)
=>DI là đg trung tuyến mà tam giác DAB vuông cân
=> DI là đg phân giác=>\(\widehat{ADM}=45^{o}\)
Tg tự: \(\widehat{AEM}=45^{o}\)
=>Tam giác AME vuông cân
a) Các tam giác DBA và tam giác EAC vuông cân nên \(\widehat{ABD}=\widehat{DAB}=45^o,\widehat{CAE}=\widehat{ECA}=45^o\).
\(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=45^o+90^o+45^o=180^o\).
Suy ra D, A, E thẳng hàng.
b) Có M là trung điểm của BC và tam giác BAC vuông tại A nên MA = MB = MC.
Suy ra \(\Delta DBM=\Delta DAM\left(c.c.c\right)\). Vì vậy \(\widehat{BDM}=\widehat{ADM}\) hay DM là tia phân giác góc ADB.
mà tam giác BDA cân tại D nên DM cũng là đường cao hay \(DM\perp AB\).
Tương tự cho \(EM\perp AC\).
c) Theo chứng minh trên DM là tia phân giá góc ADB nên \(\widehat{BDM}=\widehat{MDA}=45^o\). Tương tự \(\widehat{AEK}=\widehat{KEC}=45^o\).
Vì vậy ta, giác DME vuông cân.
d) Do các tam giác ADB và tam giác AEC cân và DF và EK là đường cao tương ứng nên DF và EK cũng là các đường trung tuyến.
Vì vậy F và K lần lượt là trung điểm của AB và AC.
Từ đó suy ra FK là đường trung bình của tam giác BAC hay \(FK=\frac{1}{2}BC\).
a) Chứng minh D E A ^ = 180 0
b) Chứng minh
A I M ^ = A K M ^ = I A K ^ = 90 0
c) Chứng minh DDME có E D M ^ = D E M ^ = 45 0
Þ DDME vuông cân ở M.