Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
giúp mình câu này nhé,ghi rõ ra cho mình luôn và cả hình nữa,cảm ơn mọi người
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AEDF có
AE//DF
DE//AF
Do đó: AEDF là hình bình hành
mà \(\widehat{DAE}=90^0\)
nên AEDF là hình chữ nhật
a, Vì DE//AB nên DE⊥AC và DF//AC nên DF⊥AB
Vì \(\widehat{AED}=\widehat{AFD}=\widehat{EAF}=90^0\) nên AEDF là hcn
b,Vì E là trung điểm MD và AC nên AMCD là hbh
Mà AC⊥DE nên AMCD là hthoi
c, Vì D là trung điểm BC và AK và \(\widehat{BAC}=90^0\) nên ABKC là hcn
Để ABKC là hv thì AB=AC hay tam giác ABC vuông cân tại A
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Xét ΔABC có CF/CA=CD/CB
nên DF//AB và DF=AB/2
=>Di//AB và DI=AB
=>ABDI là hình bình hành
a) Để chứng minh tứ giác AEDF là hình chữ nhật, ta cần chứng minh các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- AD là đường cao của tam giác ABC, nên AEDF là hình chữ nhật nếu và chỉ nếu AE = DF.
- AE là hình chiếu của D lên AB, nên AE = DD' (với D' là hình chiếu của D lên AB).
- DF là hình chiếu của D lên AC, nên DF = DD'' (với D'' là hình chiếu của D lên AC).
Vậy để chứng minh AEDF là hình chữ nhật, ta cần chứng minh DD' = DD''.
Ta có tam giác DDD' và tam giác DDD'' là hai tam giác vuông có cạnh chung DD'. Vì vậy, ta có:
- DD' = DD'' (cạnh huyền của hai tam giác vuông bằng nhau)
- Góc DDD' = Góc DDD'' = 90 độ (góc vuông)
Vậy tam giác DDD' và tam giác DDD'' là hai tam giác vuông cân có cạnh chung DD'. Do đó, ta có DD' = DD''.
Vậy AE = DF, tứ giác AEDF là hình chữ nhật.
b) Gọi I là trung điểm của EF. Ta cần chứng minh A, I, D thẳng hàng.
Vì I là trung điểm của EF, nên AI là đường trung bình của tam giác AEF. Do đó, ta có AI song song với đường cao DD' của tam giác ABC.
Vì AEDF là hình chữ nhật, nên AE song song với DF. Khi đó, ta có AI song song với EF.
Vậy ta có AI song song với cả DD' và EF. Do đó, A, I, D thẳng hàng.
Vậy ta đã chứng minh được A, I, D thẳng hàng.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi