Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I
Ta có DC vuông góc với DE, BC vuông góc với BE
=> \(\widehat{DEB}=\widehat{DCB}=\frac{360-\widehat{CDE}-\widehat{CBE}}{2}=\frac{360-90-90}{2}=90\)
=>Tứ giác DCEB là hình cữ nhật
=> BC = DE (1) và BC // DE
=> \(\frac{CB}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2CB\left(2\right)\)
Từ (1) và (2) => DE = EI hay E là trung điểm DI
Mà tam giác DAI vuông tại A
=> DE = AE
Hay tam giác EDA cân
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Ta có: ABC + ABD = 180o (2 góc kề bù)
và ACB + ACE = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABD = ACE
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE (gt)
=> △ABD = △ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> △ADE cân tại A
b, Xét △HBD vuông tại H và △KCE vuông tại K
Có: BD = CE (gt)
HDB = KEC (△ABD = △ACE)
=> △HBD = △KCE (ch-gn)
=> HBD = KCE (2 góc tương ứng)
Mà HBD = CBI (2 góc đối đỉnh) và KCE = BCI (2 góc đối đỉnh)
=> CBI = BCI
=> △BIC cân tại I
c, Xét △ABI và △ACI
Có: AB = AC (cmt)
BI = CI (△BIC cân tại I)
AI là cạnh chung
=>△ABI = △ACI (c.c.c)
=> BIA = CIA (2 góc tương ứng)
Mà IA nằm giữa IB, IC
=> IA là tia phân giác của góc BIC