K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

a) Tam giác BAE = tgiac BFE (ch.gn)

=> BA = BF => B thuộc đường trung trực của AF

=> EA = EF => E thuộc đường trung trực của AF 

Do đó BE là đường trung trực của AF
b) hai tgiac = nhau trường hợp góc cạnh góc

c) tam giác eai = tgiac efc ( cgc)

=> ei = ec

d) Ta có EA = EF

mà EF < EC (trong tgiac vuông efc cạnh huyền lớn nhất)

=> EA < EC

28 tháng 6 2020

B A I E C F K

a) Xét \(\Delta BAE\)và \(\Delta BFE\)

\(\widehat{ABE}=\widehat{FBE}\)(gt)

BE chung

=>\(\Delta BEA\)=\(\Delta BEF\)(cạnh huyền-góc nhọn)

=> EA=EF ( 2 cạnh tương ứng) 

=> BA=BF(2 cạnh tương ứng)

Xét \(\Delta BKA\)và \(\Delta BKF\)có:

BA = BF (cmt)

\(\widehat{ABK}=\widehat{FBK}\left(gt\right)\)

BK chung

=> \(\Delta BKA\)=\(\Delta BKF\)(c.g.c)

=> AK = KF (2 cạnh tương ứng) (1)

=>\(\widehat{AKB}=\widehat{FKB}\)(2 góc tương ứng)

Mà 2 góc lại kề bù  =>\(\widehat{AKB}=\widehat{FKB}=90^o\)(2)

Từ (1),(2)=> đpcm

b) Xét \(\Delta BAC\)và \(\Delta BFI\)

BA = BF(a)

\(\widehat{B}\)chung

\(\widehat{BAE}=\widehat{BFE}=90^o\)

=> \(\Delta BAC\)=\(\Delta BFI\)(g.c.g)

Xét \(\Delta EAI\)và \(\Delta EFC\)có:

\(\widehat{AEI}=\widehat{FEC}\)(đối đỉnh)

EA = EF( a)

\(\widehat{EAI}=\widehat{CFE}=90^o\)

=> \(\Delta EAI\)\(\Delta EFC\)(g.c.g)

=> EI=EC.

4 tháng 5 2018

Bài 1: ...., tia phân giác BE của ABC ( E thuộc AC)... 

như z pải ko bn

a) Xét tam giác ABE vuông tại A và tam giác FBE vuông tại F

có: BE là cạnh chung

góc ABE = góc FBE ( gt)

=> tam giác ABE = tam giác FBE ( cạnh huyền- góc nhọn)

=> AE = FE ( 2 cạnh tương ứng) (1)

Xét tam giác AEK vuông tại A và tam giác FEC vuông tại F

có: AE = FE(cmt)

góc AEK = góc FEC ( đối đỉnh)

=> tam giác AEK = tam giác FEC ( cạnh góc vuông- góc nhọn)

=> EK = EC ( 2 cạnh tương ứng)

Xét tam giác FEC vuông tại F

có: FE < EC ( quan hệ cạnh huyền và cạnh góc vuông) (2)

Từ(1);(2) => AE< EC

b) ta có: tam giác ABE = tam giác FBE ( chứng minh phần a)

=> AB = FB ( 2 cạnh tương ứng) (1)

ta có: tam giác AEK = tam giác FEC ( chứng minh phần a)

=> AK = FC ( 2 cạnh tương ứng) (2)

Từ (1);(2) => AB+ AK = FB+ FC

                 => BK = BC

=> tam giác BKC cân tại B ( định lí)

mà BE là tia phân giác của góc KBC

=> BE là đường trung trực của KC ( định lí)

c) Xét tam giác ABC vuông tại A

có: góc ABC + góc C = 90 độ ( 2 góc phụ nhau) 

thay số: 70 độ + góc C = 90 độ

                          góc C = 90 độ - 70 độ

                         góc C  = 20 độ

ta có: góc FBE = góc ABC/2 = 70 độ/2 = 35 độ ( tính chất tia phân giác)

=> góc FBE = 35 độ

Xét tam giác BEC

có: góc C + góc FBE + góc BEC = 180 độ ( định lí tổng 3 góc trong tam giác)

thay số: 20 độ + 35 độ + góc BEC = 180 độ

                                         góc BEC  =180 độ - 20 độ - 35 độ

                                        góc BEC = 125 độ

Học tốt nhé bn !!!!

xin lỗi bn nha! nhưng mk ko bít kẻ hình

14 tháng 8 2016

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

15 tháng 8 2016

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

14 tháng 8 2016

a) Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
b) từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
c) c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
d) tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC.

14 tháng 8 2016

Bài này cực dễ luôn