Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(\Delta AFE~\Delta BAE\left(g.g\right)\)
\(\Rightarrow\widehat{AFE}=\widehat{BAE}\)
mà \(AEDB\)nội tiếp nên \(\widehat{BAE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{AFE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{CFE}+\widehat{CDE}=180^o\)
suy ra \(CDEF\)nội tiếp.
c
Cho tam giác vuông tại . Nửa đường tròn đường kính cắt tại . Trên cung lấy một điểm . Nối và kéo dài cắt tại . Chứng minh là tứ giác nội tiếp.
theo gt, ta có: DAB = BCA= 90 - CBA
(Tính chất tổng các góc trong tam giác BCA và tam giác BAD)
Mặt khác DEB = DAB ( Cùng chắn cung DB)
=> DEB= BCA => Đpcm
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét tứ giác FCDE có
\(\widehat{FCD}+\widehat{FED}=180^0\)
Do đó: FCDE là tứ giác nội tiếp
b: Xét ΔACD vuông tại C và ΔBED vuông tại E có
\(\widehat{CDA}=\widehat{EDB}\)
Do đó: ΔACD\(\sim\)ΔBED
Suy ra: DA/DB=DC/DE
hay \(DA\cdot DE=DB\cdot DC\)