K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

2 tháng 1 2019

a) Chứng minh tam giac AMB = tam giac DMC

Xét tam giác MAB và tam giác MDC, có

- MA = MD (M là trung điểm AD)

- MB = MD (M là trung điểm BD) 

- Góc M đối nhau

=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh)  (đpcm)

b) Chứng minh DC vuông góc AC

Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)

=> góc A1 + góc A2 = 90 độ

mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)

=> góc ADC + góc A2 = 90 độ

Xét tam giác CAD,

có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ

=> góc ACD = 90 độ

=> tam giác DAC vuông tại C

Ta có DC vuông góc AC tại C

và BA vuông góc AC tại A

=> BA // DC (đpcm)

c) AM = 1/2BC

Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)

Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:

Xét tứ giác ABDC có:

- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)

- DC // BA

=> tứ giác ABDC là hình bình hành

và có góc A vuông

=> tứ giác ABDC là hình chữ nhật

=> 2 đường chéo của hình chữ nhật là AD = BC

mà M là trung điểm của AD và BC

=> AM = 1/2 BC (đpcm)

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng