K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100 

=>BC=10.

b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :

AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .

=> 6K=DC ; 8K=BD .

CÓ  BD+DC =BC=10

<=>6K+8K=10

<=>14K=10

<=>K=5/7 .

=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .

C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.

CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.

20 tháng 7 2018

A B C D E F

a)  Áp dụng đinh lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

Để tính góc B bn tính tỉ số lượng giác của 1 trong 2 góc sau đó tra bảng là ra đc số đo góc đó và tính đc góc còn lại

(do mk k biết dùng bảng lượng giác nên k giúp đc phần này)

b)  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay  \(\frac{BD}{6}=\frac{DC}{8}=\frac{BD+DC}{6+8}=\frac{10}{14}=\frac{5}{7}\)

suy ra:     \(\frac{BD}{6}=\frac{5}{7}\)\(\Rightarrow\)\(BD=\frac{30}{7}\)

               \(\frac{DC}{8}=\frac{5}{7}\)\(\Rightarrow\)\(DC=\frac{40}{7}\)

c)  Tứ giác  AEDF  có:  \(\widehat{A}=\widehat{F}=\widehat{E}=90^0\)

\(\Rightarrow\)Tứ giác  \(AEDF\)là hình chữ nhật

3 tháng 12 2021

\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)

3 tháng 12 2021

Học lại Toán lớp 7 đi.

14 tháng 4 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét tam giác ABC vuông tại A có: (ABC) = 60 0 , BC = 8 cm

⇒ AB = BC.cos (ABC) = 8.cos  60 0  = 4 (cm)

AC = BC.sin (ABC) = 8.sin  60 0  = 4 3 (cm)

Diện tích xung quanh của hình nón là

S x q  = πrl = π.AB.BC = π.4.8 = 32 ( c m 2 )

Thể tích hình nón là:

Đề kiểm tra Toán 9 | Đề thi Toán 9

13 tháng 7 2015

bạn tự vẽ hình 

ta có:

\(\tan C=\frac{AB}{AC}=\frac{3}{4}\)=> góc C \(\approx\) 36052'

=> góc B= 900-36052'=5308'

Xét tam giác ABC vuông tại A:

AB2+AC2=BC2

32+42=BC2

BC2=25

=>BC=5 (cm)

30 tháng 7 2023

Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::

\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)

\(\Rightarrow20^2=BC^2-BC\cdot9\)

\(\Rightarrow BC^2-9BC-400=0\)

\(\Rightarrow BC^2+16BC-25BC-400=0\)

\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)

\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)

Áp dụng hệ thức đường cao và hình chiếu ta có:

\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)

\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)

Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)