K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

a) Xét 2 tam giác BME và tam giác AHC 

có \(\widehat{BME}=\widehat{AHC}=90^0\)

\(\widehat{ABC}chung\)

nên 2 tam giác BME và tam giác AHC đồng dạng với nhau

b)

xét tam giác ABH

có AE là phân giác của góc BAH

nên \(\widehat{MAE}=\widehat{HAE}\)

có \(\widehat{MAE}+\widehat{CAE}=90^0\)

\(\widehat{HAE}+\widehat{CEA}=90^0\)

suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C

c)

xét tam giác AHC có 

AD là tia phân giác của góc HAC

nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)

lại có AC = EC

nên \(AH\cdot CD=EC\cdot AC\)

d)

chứng minh tương tự câu b

ta có tam giác ABD cân tại B

suy ra AB = BD

mà AC = EC

nên AB + AC  = BD + EC = BD + CD + ED = BC + DE

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

14 tháng 3 2023

a. Xét tam giác HAC và tam giác ABC, có:

\(\widehat{C}\) : chung

\(\widehat{AHC}=\widehat{BAC}=90^o\)

Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )

b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)

Áp dụng định lý pytago tam giác ABC, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

c. Tam giác AHB có phân giác AD:

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2) 

(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

10 tháng 2 2018

kho ua

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2