K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

A B C H

Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)

Xét \(\Delta AHC\)và \(\Delta ABC\)có :

\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)

\(\widehat{C}\)chung 

\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )

Hay \(\Delta ABC\)vuông tại A ( đpcm ) 

24 tháng 7 2019

A C B H D E F

24 tháng 7 2019

a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)

      Xét \(\Delta\)AHD và \(\Delta\)FHA có:

        \(\widehat{AHD}=\widehat{FHA}=90^o\)

           \(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)

\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)

\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)

mà \(\widehat{ADH}+\widehat{HAD}=90^o\)

nên \(\widehat{FAH}+\widehat{HAD}=90^o\)

hay  \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A