K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

A B C H

Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)

Xét \(\Delta AHC\)và \(\Delta ABC\)có :

\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)

\(\widehat{C}\)chung 

\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )

Hay \(\Delta ABC\)vuông tại A ( đpcm ) 

30 tháng 5 2023

Ta có : \(S_{ABC}=\dfrac{AH.BC}{2}\)

Kẻ đường cao từ B xuống AC tại E do đó :

\(S_{ABC}=\dfrac{BE.AC}{2}\)

mà \(BE< AB\) ( AB là cạnh huyền trong tam giác ABE )

Do đó :

\(\dfrac{AB.AC}{2}\ge\dfrac{BE.AC}{2}=\dfrac{AH.BC}{2}\)

\(\Rightarrow AB.AC\ge AH.BC\left(đpcm\right)\)

Dấu bằng xảy ra khi và chỉ khi : BE trùng với AB

\(\Leftrightarrow\Delta ABC\) vuông tại A .

 

20 tháng 2 2016

nói thật chứ bài nay tui lop 7 lam dc

28 tháng 3 2016

ban giup mk giai bai tren dc k mk dang can 

2 tháng 7 2021

a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)

b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)

\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)

c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)