Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔABC vuông tại A
mà AI là đường trung tuyến
nên \(AI=\dfrac{BC}{2}=5\left(cm\right)\)
b: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
c: Xét ΔABC có
I là trung điểm của CB
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
a: BC=10cm
=>AI=5cm
b: Xét tứ giác AMIN có
góc AMI=góc ANI=góc MAN=90 độ
nên AMIN là hình chữ nhật
c: Xét ΔABC có
I là trung điểm của BC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác ADCI có
N là trung điểm chung của AC và DI
IA=IC
Do đó: ADCI là hình thoi
a) Ta có: NB = NC (gt); ND = NA (gt)
⇒ Tứ giác ABDC là hình bình hành
có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.
b) Ta có: AI = IC (gt); NI = IE (gt)
⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).
mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.
Vậy tứ giác AECN là hình thoi.
c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.
Tương tự G’ là trọng tâm của hai tam giác ACD
⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’
d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)
Lại có: BG = GG’ = CG’ (tính chất trọng tâm)
⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD
(chung đường cao kẻ từ D và đáy bằng nhau)
Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))
⇒SDGG' = 24/3 = 8(cm2)
Xét tứ giác AICN có
M là trung điểm của AC
M là trung điểm của IN
Do đó: AICN là hình bình hành
mà \(\widehat{AIC}=90^0\)
nên AICN là hình chữ nhật
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
AM=BC/2=5cm
b: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nen AEMF là hình chữ nhật
c: Xét tứ giác AMBN có
F là trung điểm chung của AB và MN
MA=MB
Do đó: AMBN là hình thoi
a) Với ∆ABC ⊥ tại A và M là trung điểm BC, ta có:
- Theo định lý Pythagoras, ta có: AB^2 + AC^2 = BC^2
- Thay giá trị vào, ta có: 6^2 + 8^2 = BC^2
- Tính toán, ta có: 36 + 64 = BC^2
- Tổng cộng, BC^2 = 100
- Vì BC là độ dài, nên BC = √100 = 10cm
- Vì M là trung điểm BC, nên AM = MC = 10/2 = 5cm
b) Để chứng minh ABEC là hình chữ nhật, ta cần chứng minh AB // EC và AB = EC.
- Vì M là trung điểm BC, nên AM = MC.
- Vì ∆ABC ⊥ tại A, nên góc BAC = 90 độ.
- Vì M là trung điểm BC, nên BM = MC.
- Vì BM = MC và góc BAC = 90 độ, nên ∆BAM ≅ ∆CAM theo góc-góc-góc.
- Từ đó, ta có AB = AC và góc BAM = góc CAM.
- Vì AB = AC và góc BAM = góc CAM, nên ∆ABM ≅ ∆ACM theo cạnh-góc-cạnh.
- Từ đó, ta có góc AMB = góc AMC và BM = MC.
- Vì góc AMB = góc AMC và BM = MC, nên ∆BME ≅ ∆CME theo góc-góc-góc.
- Từ đó, ta có góc BME = góc CME và BM = MC.
- Vì góc BME = góc CME và BM = MC, nên BM // EC.
- Vì BM // EC và AB = AC, nên AB // EC và AB = EC.
- Từ đó, ta có ABEC là hình chữ nhật.
c) Để chứng minh AH = IK và NO = 1/2 IK, ta cần chứng minh ∆AHN ≅ ∆IKO.
- Vì AH ⊥ BC và IK ⊥ AB, nên góc HAN = góc KIO = 90 độ.
- Vì AH ⊥ BC và HN ⊥ AN, nên góc HAN = góc HNA.
- Vì IK ⊥ AB và KO ⊥ AO, nên góc KIO = góc KOI.
- Vì góc HAN = góc HNA và góc KIO = góc KOI, nên ∆AHN ≅ ∆IKO theo góc-góc-góc.
- Từ đó, ta có AH = IK và NO = 1/2 IK.
d) Vì ∆AHN ≅ ∆IKO, nên góc INK = góc HNO.
- Vì NO = 1/2 IK, nên góc HNO = góc INK.
- Từ đó, ta có góc INK = góc HNO.
a: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
a/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)
\(IB=IC\Rightarrow AI=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow AI=\dfrac{BC}{2}=\dfrac{10}{2}=5cm\)
b/
Ta có
OA=OC (gt)
OI=ON (gt)
=> AICN là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường) (1)
\(AI=IC=\dfrac{BC}{2}\) (2)
Từ (1) và (2)
=> AICN là hình thoi (Hình bình hành có hai cạnh liền kề bằng nhau)
Không đủ dữ kiện để c/m AICN là HCN