Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠn chỉ mình vẽ bán kính trên hoc24.vn đi rồi mình giải cho
a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.
b) Xét tam giác vuông ACB, ta có:
\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)
Xét tam giác vuông ACB, ta có:
\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)
Xét tam giác vuông ABD, ta có:
\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)
c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.
Vậy O' là trung điểm BD.
Xét tam giác OCO' và OBO' có:
O'C = O'B (gt)
OC = OB (= R)
OO' chung
\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)
\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)
Vậy nên O'C là tiếp tuyến của đường tròn (O).
Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').
d) Gọi H là hình chiếu của I trên OB.
\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)
Ta có hai công thức tính diện tích tam giác:
Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi
\(S=pr\) với r bán kính đường tròn nội tiếp.
Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)
\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)
Vậy thì:
\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)
Thấy ngay IH = r.
Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\) (Do BI là phân giác góc vuông)
Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)
\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)
Xét tam giác vuông OIH, ta có:
\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)
a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.
b) Xét tam giác vuông ACB, ta có:
\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)
Xét tam giác vuông ACB, ta có:
\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)
Xét tam giác vuông ABD, ta có:
\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)
c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.
Vậy O' là trung điểm BD.
Xét tam giác OCO' và OBO' có:
O'C = O'B (gt)
OC = OB (= R)
OO' chung
\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)
\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)
Vậy nên O'C là tiếp tuyến của đường tròn (O).
Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').
d) Gọi H là hình chiếu của I trên OB.
\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)
Ta có hai công thức tính diện tích tam giác:
Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi
\(S=pr\) với r bán kính đường tròn nội tiếp.
Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)
\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)
Vậy thì:
\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)
Thấy ngay IH = r.
Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\) (Do BI là phân giác góc vuông)
Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)
\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)
Xét tam giác vuông OIH, ta có:
\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)
Đáp án C.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với mặt phẳng (ABC) thì mặt cầu ngoại tiếp hình chóp S.ABC có bán kính r = 1 2 . S A 2 + A B 2 + A C 2 . Với giả thiết của bài toán, ta có r = a 6 2 .
Phân tích phương án nhiễu:
Phương án A: Sai do HS nhớ đúng công thức tính r = 1 2 . S A 2 + A B 2 + A C 2 nhưng lại biến đổi nhầm x 2 + y 2 + z 2 = x + y + z .
Phương án B: Sai do HS có thể gắn hệ trục tọa độ Oxyz vào hình chóp (A trùng với O và B, C, S lần lượt thuộc các tia Ox, Oy, Oz) và nhầm rằng tâm của mặt cầu chính là trọng tâm G a 3 ; a 2 3 ; a 3 3 của tam giác ABC nên tính được r = O G = a 6 3 .
Phương án D: Sai do HS nhớ nhầm công thức r = 1 2 . S A 2 + A B 2 + A C 2 thành r = S A 2 + A B 2 + A C 2 .
14 cháu
Làm trên này là fai có cáh giải nuk cháu ak, ghi kq chỉ tổ tốn côg