K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

27 tháng 10 2017

Không thì dùng định lý Euler nhanh hơn. Gọi d là khoản cách giữa tâm nội tiếp và ngoại tiếp thì ta có

\(d^2=R\left(R-2r\right)\ge0\)

\(\Leftrightarrow R\ge2r\)

27 tháng 10 2017

Ta có: \(S=\frac{abc}{4R}=\frac{\left(a+b+c\right)r}{2}\)

\(\Rightarrow\hept{\begin{cases}R=\frac{abc}{4S}\\r=\frac{2S}{a+b+c}\end{cases}}\)

Ta cần chứng minh:

\(R\ge2r\)

\(\Leftrightarrow\frac{abc}{4S}\ge\frac{4S}{a+b+c}\)

\(\Leftrightarrow abc\left(a+b+c\right)\ge16S^2\)

\(\Leftrightarrow abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

Ta có: 

\(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)

Tương tự ta có điều phải chứng minh

Tới đây thì xong rồi nhé. 

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10

Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2

AB2+AC2=100 (Pytago)

Giải pt ra, ta được: (AB;AC)=(6;8)

=> AB+AC=14

21 tháng 3 2016

bằng 14 nha !