Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Xét tam giác $AMB$ và $EMC$ có:
$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)
$AM=EM$
$MB=MC$
$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)
b.
Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$
Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$
Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)
c.
Vì $\triangle AMB=\triangle EMC$ nên:
$AB=EC$
Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$
Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)
$AC$ chung
$EC=BA$ (cmt)
$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)
$\Rightarrow EA=BC$
Mà $EA=2AM$ nên $2AM=BC$ (đpcm)
a) Xét tg AMB và EMC có :
MA=ME(gt)
MB=MC(gt)
\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)
=> Tg AMB=EMC(c.g.c) (đccm)
b) Do tg AMB=EMC (cmt)
\(\Rightarrow\widehat{B}=\widehat{ECM}\)
=> AB//EC
\(\Rightarrow\widehat{BAC}=\widehat{ECA}=90^o\)
\(\Rightarrow AC\perp CE\left(đccm\right)\)
c) Do tg ABM=CEM (cmt)
\(\Rightarrow AM=MC=\frac{BC}{2}\)
Hay nói cách khác : BC=2AM (đccm)
#H
a: Xét ΔAMB và ΔEMC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Ta có: ΔAMB=ΔEMC
=>AB=CE
Ta có: ΔAMB=ΔEMC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
c: Xét ΔHAM và ΔKEM có
HA=KE
\(\widehat{HAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔHAM=ΔKEM
=>\(\widehat{AMH}=\widehat{EMK}\)
mà \(\widehat{AMH}+\widehat{HME}=180^0\)(hai góc kề bù)
nên \(\widehat{EMK}+\widehat{HME}=180^0\)
=>H,M,E thẳng hàng
Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:
$BM=CM$ (do $M$ là trung điểm $BC$)
$AM=EM$ (gt)
$\widehat{AMB}+\widehat{EMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{ECM}$
Mà hai góc này so le trong nên $AB\parallel CE$
c.
$AB\perp AC; AB\parallel CE$
$\Rightarrow AC\perp CE$ (đpcm)
a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: AB//EC
c: Ta có: ABEC là hình chữ nhật
nên EC\(\perp\)AC
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên (hai góc tương ứng)
hay
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)
hay \(\widehat{BCA}=\widehat{KCA}\)
Xét ΔCAB vuông tại A và ΔCAK vuông tại A có
CA chung
\(\widehat{BCA}=\widehat{KCA}\)(cmt)
Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)
Suy ra: CA=CK(hai cạnh tương ứng)
Ta có: CN+NK=CK(N nằm giữa C và K)
CM+MB=CB(M nằm giữa C và B)
mà CK=CB(cmt)
và CN=CM(ΔCNI=ΔCMI)
nên NK=MB
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(NK=\dfrac{BC}{2}\)
mà BC=KC(cmt)
nên \(NK=\dfrac{CK}{2}\)
mà điểm N nằm giữa hai điểm C và K
nên N là trung điểm của CK(đpcm)
c) Xét ΔAMB và ΔEMC có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)
mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét t/giác AMB và t/giác EMC
có MA = ME (gt)
BM = MC (gt)
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
=> t/giác AMB = t/giác EMC (c.g.c)
b) Do t/giác AMB = t/giác EMC (cmt)
=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CE
=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)
mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE
c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến
=> AM = BM = MC = 1/2BC
=> BC = 2AM
HD C2: CM t/giác ABC = t/giác CEA (C.g.c)
=> BC = EA (2 cạnh t/ứng
=> 1/2BC = 1/2EM
=> 1/2BC = MA (vì EM = MA = 1/2EM)
=> AM = 2BC