Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyenMashiro ShiinaXuân SángNhã DoanhnAkai HarumagonhuminhNguyễn Thanh Hằngnguyen thi Nguyễn Huy TúvangMến Hoàng Anh ThưVũPhạm Nguyễn Tất ĐạtVõ Đông Anh TuấnHoàng Lê Bảo NgọcPhương Ansoyeon_Tiểubàng giảiAce Legona
a.Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)
BD - cạnh chung
\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)
\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)
b.Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)
AD = ED ( vi \(\Delta ABD=\Delta EBD\) )
\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF = DC ( 2 cạnh tương ứng)
=> \(\Delta FDC\) cân tại D
c.Ta có:AB = EB (cm a)
=> \(\Delta ABE\) cân tại B
Mà BD là đường phân giác \(\widehat{ABE}\)
=> BD là đường trung trực của \(\Delta ABE\)
=> \(BD\perp AE\) (1)
Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )
=>AF = EC ( 2 cạnh tương ứng)
Mà AB = BE => AB+AF=BE+EC
=> BF = BC. => \(\Delta BFC\) cân tại B
Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)
=> BD là đường trung trực của \(\Delta FBC\)
=> \(BD\perp FC\) (2)
Từ (1),(2) => AE// FC ( dpcm)
Hình vẽ
+) Xét tam giác vuông AEI và tam giác vuông CFI có:
AI = CI (gt)
\(\widehat{AIE}=\widehat{CIF}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AEI=\Delta CFI\) (Cạnh huyền - góc nhọn)
+) Theo quan hệ giữa đường xiên và đường vuông góc ta có:
\(AI>EI;IC>IF\Rightarrow AC>EF\) (đpcm)