Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: tg BEC cân tại B( do BE=BC) có góc EBC=60độ => Tg BEC đều
b. BI là phân giác góc ABC => góc ABI = góc IBC = 30độ (=góc ACB)
=> tg BIC cân tại I => IB=IC
Lại có: tg ABC vuông tại A có góc ACB=30độ => AB=1/2 BC => AB=1/2 BE => AB=AE
=> tg BAI = tg EAI (c-g-c) => BI=EI
=> EI=IC
c, tg BAI = tg EAI (c-g-c) => góc AEI = góc ABI = 30độ
=> góc AEI + góc ABC = 30 độ + 60độ = 90độ => EI vuông góc BC
d. Ta có IB=IC => IA + IB = IA+IC =AC <BC (cạnh gv <cạnh huyền)
a, Ta có :
\(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\)
\(=> AB^2+AC^2=BC^2\)
\(=> \) △ABC vuông tại A
b, Xét △BAH và △BEH có :
\(\widehat{BHA}=\widehat{BHE}=90^o\)
BH : chung
HE = HA (GT)
=> △BAH = △BEH (c.g.c)
=> BA = BE (2 cạnh tương ứng)
c, Xét △CAH và △CEH có :
\(\widehat{CHA}=\widehat{CHE}=90^o\)
\(CH\) :chung
AH = HE (GT)
=> △CAH = △CEH (c.g.c)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CH là phân giác \(\widehat{ACE}\)
d, Xét △BAC và △BEC có :
\(BA=BE (câu a)\)
CA = CE (△CAH = △CEH)
BC : chung
=> △BAC = △BEC(c.c.c)
=> \(\widehat{BAC}=\widehat{BEC}\)
mà \(\widehat{BAC}=90^o\)
\(=> \widehat{BEC}=90^o\)
=> △BEC vuông tại E
a) ta có: A + ABC + C =180° (đ/l)
=> 90° + ABC + 40° =180°
=> ABC = 180° -( 40°+ 90°)
=> ABC = 50°
Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°
Vậy ABD = 25°
b) xét tam giác BAD và tam giác BED có:
AB = BE ( GT )
BD chung
ABD = CBD ( GT )
=> tam giác BAD = tam giác BED ( c.g.c )
Ta có A = BED = 90° ( 2 góc t.ư)
=> DE vuông góc BC ( vì có 1 góc= 90° )
c) xét tam giác ABC và tam giác EBF có:
AB = BE ( GT )
B chung
A = E = 90°
=> tam giác ABC = tam giác EBF ( g.c.g )
d) ta có tam giác ABC = tam giác EBF ( theo c )
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( GT )
BK chung
FBK = KBC ( GT )
=> tam giác BKC = tam giác BKF (c.g.c)
=> BKC = BKF ( 2 góc t.ư)
=> BKC + BKF = 180° ( 2 góc kề bù )
=> BKC = BKF = 180° : 2 = 90° = KFC
Vậy 3 điểm K,F,C thẳng hàng
Bn vẽ hình hộ mk nhé!
a) Áp dụng tc tổng 3 góc của 1 tg ta có:
góc BAC + ACB + ABC = 180 độ
=>90 + 40 + ABC = 180
=> ABC = 50 độ
mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )
hình bạn tự vẽ nha
a)Xét tam giác BED và tam giác BEC có
BD=BC(giả thiết)
góc DBE= góc CBE(giả thiết)
cạnh BE chung
=>tam giác BED=tam giác BEC(c.g.c)(đpcm)
b)xét tam giác BKD và tam giác BKC có
BD=BC(giả thiết)
góc DBK= góc CBK(giả thiết)
Cạnh BK chung
=>tam giác BKD= tam giác BKC(c.g.c)
=>DK=CK(2 cạnh tương ứng)
Do đó tam giác CKD cân tại K
c)vì tam giác BED= tam giác BEC(theo phần a)
=>DE=CE(2 cạnh tương ứng)
Vì tam giác CKD cân tại K
=>góc KDE= góc KCE
xét tam giác KED và tam giác KEC có
KC=KD(theo phần b0
Góc KDE=góc KCE(chứng minh trên)
CE=DE(chứng minh trên)
=>tam giác KED = tam giác KEC (c.g.c)
góc KED=góc KEC(2 góc tương ứng)
mà 2 góc này kề bù
=>góc KED=góc KEC=180 độ : 2=90 độ
vì AH // BE
=>góc AHE= góc BEH
mà 2 góc này ở vị trí trong cùng phía
=>góc AHE+ góc BEH=180 độ
=>góc AHE= góc BEH=180 độ :2=90 độ
do đó AH vuông góc với DC