\(\alpha< 90^o\) . Chứng minh rằng:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

3)kẻ BD vuông góc voi71 BC, D thuộc AC

tam giác ABC cân tại A có AH là Đường cao

suy ra AH là trung tuyến

Suy ra BH=HC

(BD vuông góc BC

AH vuông góc BC

suy ra BD song song AH

suy ra BD/AH = BC/CH = 2

suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2

tam giác BDC vuông tại B có BK là đường cao

suy ra 1/BK^2 =1/BD^2 +1/BC^2

suy ra 1/BK^2 =1/4AH^2 +1/BC^2

7 tháng 11 2017

1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).

30 tháng 6 2017

ta có \(\sin\alpha:\cos\alpha=\frac{đ}{h}:\frac{k}{h}=\frac{đ}{h}.\frac{h}{k}=\frac{đ}{k}=\tan\alpha \left(đpcm\right)\)

30 tháng 6 2017

Góc B bằng alpha suy ra:

\(\frac{sin\alpha}{cos\alpha}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{AB}=tan\alpha\)(đpcm)

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

11 tháng 10 2015

Kẻ phân giác BD \(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AD+CD}=\frac{AB}{AB+BC}\Rightarrow\frac{AD}{AC}=\frac{AB}{AB+BC}\Rightarrow AD=\frac{bc}{a+c}\)

\(tan\frac{\alpha}{2}=\frac{AD}{AB}=\frac{\frac{bc}{a+c}}{c}=\frac{b}{a+c}\left(đpcm\right)\)