K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

undefined

18 tháng 2 2019

Hình dễ, bạn tự kẻ :D
- Từ A kẻ AH⊥BC (H∈BC)AH⊥BC (H∈BC). ΔABCΔABC vuông cân ở A có AH là đường cao đồng thời là đường trung tuyến 
- Gọi giao điểm của AH và BD là G →G→G là trọng tâm ΔABC→AGAH=23ΔABC→AGAH=23
- ΔAEBcóBG⊥AE; AH⊥BE→GΔAEBcóBG⊥AE; AH⊥BE→G là trực tâm ΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CHΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CH
→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH
- Ta có EB:EC=4CH32CH3=2→EB=2EC

7 tháng 5 2021

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

7 tháng 5 2021

Giúp mình với 

18 tháng 4 2020

Xét \(\Delta\)vuông BCE có M là trung điểm BC\(\Rightarrow BM=CM=EM=\frac{BC}{2}\)

Xét \(\Delta BME\)có BM=EM\(\Rightarrow\Delta BME\)cân tại M\(\Rightarrow\widehat{EBM}=\widehat{BEM}\)(1)

Vì BD là p/g \(\widehat{ABC}\Rightarrow\widehat{ABD}=\widehat{EBM}\)(2)

Từ (1)(2)\(\Rightarrow\widehat{BEM}=\widehat{ABD}\)Mà 2 góc này này nằm ở vị trí so le trong của 2 đường thẳng AB và ME\(\Rightarrow AB//ME\)(3)

Do \(\Delta ABC\)vuông tại A\(\Rightarrow AB\perp AC\)(4)

Từ (3)(4)\(\Rightarrow ME\perp AC\)

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC

4 tháng 9 2020

a/ 

Ta có BG vuông góc AB; CH vuông góc AB => BG//CH

Ta có BH vuông góc AC; CG vuông góc AC => BH//CG

=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)

M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)

b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)

Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)

Từ (1) và (2) => tg CMH đồng dạng với tg AHP

c/