Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi
a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC
Giải:
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BM = CM = BC : 2
= 10 : 2 = 5 (cm)
∆AMC có AM = CM = 5 (cm)
⇒ ∆AMC cân tại M
⇒ ∠MAC = ∠MCA (hai góc ở đáy)
Do MA ⊥ DE (gt)
CE ⊥ DE (gt)
⇒ MA // DE
⇒ ∠MAC = ∠ACE (so le trong)
Mà ∠MAC = ∠MCA (cmt)
⇒ ∠MAC = ∠ACE
⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)
Xét hai tam giác vuông:
∆ABC và ∆EAC có:
∠BCA = ∠ACE (cmt)
⇒ ∆ABC ∽ ∆EAC (g-g)
b) Do ∆ABC ∽ ∆EAC (cmt)
⇒ AC/CE = BC/AC
⇒ CE = AC²/BC
= 8²/10
= 6,4 (cm)
Bài 1 : Bài giải
A B C D E F O
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
Xét \(\Delta\)vuông BCE có M là trung điểm BC\(\Rightarrow BM=CM=EM=\frac{BC}{2}\)
Xét \(\Delta BME\)có BM=EM\(\Rightarrow\Delta BME\)cân tại M\(\Rightarrow\widehat{EBM}=\widehat{BEM}\)(1)
Vì BD là p/g \(\widehat{ABC}\Rightarrow\widehat{ABD}=\widehat{EBM}\)(2)
Từ (1)(2)\(\Rightarrow\widehat{BEM}=\widehat{ABD}\)Mà 2 góc này này nằm ở vị trí so le trong của 2 đường thẳng AB và ME\(\Rightarrow AB//ME\)(3)
Do \(\Delta ABC\)vuông tại A\(\Rightarrow AB\perp AC\)(4)
Từ (3)(4)\(\Rightarrow ME\perp AC\)