Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{B}+\widehat{C}=90\Rightarrow\widehat{B}=90-\widehat{C}=90-30=60\)
BD là phân giác \(\Rightarrow\widehat{ABD}=\widehat{CBD}=30\)
Xét \(\Delta ABD\)vuông tại A có: cạnh AD đối diện với \(\widehat{ABD}=30\)
\(\Rightarrow AD=\frac{BD}{2}\)\(\Rightarrow BD=2AD\)
\(\widehat{CBD}=\widehat{DCB}=30\)\(\Rightarrow\Delta BCD\)cân tại D \(\Rightarrow BD=CD=2AD\)
Mà AD+CD=3 \(\Rightarrow\)AD+2AD=3 \(\Rightarrow\)3AD=3 \(\Rightarrow\)AD=1 (cm)
Tìm góc C được =60 độ và góc DAC cũng =
60 độ nên hai góc bằng nhau nên tam giác ADC là tam giác cân có một góc = 60 độ .Do đó tam giác đó là tam giác đều b.Vì góc BAD = 30 độ mà góc B cũng = 30 độ =>góc BAD= góc B =>tam giác BAD cân =>AD=BD. (1) Theo câu a tam giác ADC đều nên AD=AC=CD (2). Từ (1),(2) =>AC=CD=BD =>AC=1/2(CD+BD). =>AC=1/2BC
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)
Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)
\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)
Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)
nên ΔEBC cân tại E(định lí đảo của tam giác cân)
⇒EB=EC
Xét ΔEBH vuông tại H và ΔECH vuông tại H có
EB=EC(cmt)
EH chung
Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)
nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)
\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)
Ta có: ΔEBH=ΔECH(cmt)
⇒\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)
mà \(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)
nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{KEH}=60^0\)
Ta có: HK//BE(gt)
⇒\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)
mà \(\widehat{BEH}=60^0\)(cmt)
nên \(\widehat{KHE}=60^0\)
Xét ΔKHE có
\(\widehat{KEH}=60^0\)(cmt)
\(\widehat{KHE}=60^0\)(cmt)
Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)
d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))
nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
hay EI>EA
mà EA=EH(ΔBAE=ΔBHE)
nên IE>EH(đpcm)
lấy M trên cạnh BC sao cho AC=AM
xét tam giác ABC có \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180 độ
90 độ +30 độ +\(\widehat{C}\)=180 độ
\(\widehat{C}\)=60 độ
mà \(\Delta\)MAC cân ( do AC =MC )
\(\Delta\)MAC là tam giác đều
\(\Rightarrow\)\(\widehat{MAC}\)=60 độ
\(\Rightarrow\)MC=AC=AM (1)
ta có \(\widehat{BAM}\)+\(\widehat{MAC}\)=90 ĐỘ
\(\widehat{BAM}\)+60 độ =90 độ
\(\Rightarrow\)\(\widehat{BAM}\)=30 độ
mà \(\widehat{A}\)=30 độ
suy ra tam giác MAB cân tại M
suy ra MA =MB (2)
từ 1 và 2 suy ra AC=MB=MC
suy ra AC =1/2 BC