Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
ABCHcabDEH**Cái tia phân giác là của câu a, không cần để ý nó**
Hình
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
hình tự vẽ
a) \(\text{Sin}^2\alpha+\text{Cos}^2\alpha=\frac{AC^2}{BC^2}+\frac{AB^2}{BC^2}=\frac{BC^2}{BC^2}=1\left(\text{vì }AB^2+AC^2=BC^2\right)\)
=>điều phải chứng minh
b)\(\frac{\text{Sin}\alpha}{\text{Cos}\alpha}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{BC}.\frac{BC}{AB}=\frac{AC}{AB}=\text{Tan}\alpha\)
=>điều phải chứng minh