Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(10^2=AB^2+6^2\)
=> AB = 8 (cm)
b,
Xét Δ MAC và Δ MBD, có :
MD = MC (gt)
MA = MB (M là trung tuyến của AB)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
=> Δ MAC = Δ MBD (c.g.c)
c,
Ta có : AM = 2AB
=> AM = 4 (cm)
Xét Δ AMC vuông tại A, có :
\(CM^2=AM^2+AC^2\) (Py - ta - go)
=> \(CM^2=4^2+6^2\)
=> CM ≈ 7,2 (cm)
Ta có :
AC + BC = 6 + 10 = 16 (cm)
2CM ≈ 7,2 x 2 ≈ 14,4 (cm)
=> AC + BC > 2CM
a: AB=căn 10^2-6^2=8cm
=>BM=4cm
b: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
c: AC+BC=BD+BC>CD=2CM
A C B M D '
Áp dụng đinh lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AB^2\)
\(\Leftrightarrow100-36=AB^2\Leftrightarrow64=AB^2\Leftrightarrow AB=8\)cm
Vì CM là đường trung tuyến
=> AM = BM
Nên : \(2BM=AB\Leftrightarrow2BM=8\Leftrightarrow BM=4\)cm
b, Xét \(\Delta AMC\)và \(\Delta BMD\)ta có :
AM = BM (cmt)
CM = DM (gt)
^AMC = ^BMD (đ.đ)
=>\(\Delta\) AMC = \(\Delta\)BMD ( c.g.c)
P/S: Dạo này đọc hình chán quá )):
a, Theo câu b ta có : \(\hept{\begin{cases}AC=BD\\CM=DM\end{cases}}\)
Từ đó bđt trên tương đương với
\(BD+BC>CM+DC=CD\)
Hoàn toàn đúng theo bđt tam giác ( đpcm )
Sửa đề :
a, Tính độ dài cạnh AC
Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :
\(AB^2+AC^2=BC^2\)
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\)
b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :
\(MB=MA\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )
\(MD=MC\left(gt\right)\)
= > \(\Delta AMC=\Delta DMB\)
= > DB = AC = 8 cm ( 2 cạnh tương ứng )
c, thiếu đề bài
ta có :
c. mình đâu có thấy điểm K nào đâu nhỉ
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2=100-36\)
=> \(AC^2=64\)cm => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>t.giác BCD cân tại C (đpcm)
c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M
=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)
=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm
vậy MC\(\approx\)5,3 cm
a: AB=8cm
b: Xét ΔMAC và ΔMBD có
MA=MB
\(\widehat{AMC}=\widehat{BMD}\)
MC=MD
Do đó: ΔMAC=ΔMBD
a) Xét tam giác ABC vuông tại A:
\(AB^2+AC^2=BC^2\) (Định lí Pytago).
Thay: \(AB^2+6^2=10^2.\Leftrightarrow AB=\sqrt{10^2-6^2}=8\left(cm\right).\)
b) CM là đường trung tuyến của tam giác ABC vuông tại A (gt).
\(\Rightarrow\) M là trung điểm của AB.
Xét tam giác MAC và tam giác MBD:
+ MA = MB (M là trung điểm của AB).
+ MC = MD (gt).
+ \(\widehat{AMC}=\widehat{BMD}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBD (c - g - c).