Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét t/g EAC và t/g FBC
góc AEC=góc BFC=900
góc ECA= góc BCF(Ci là p/giác của góc BCA)
Suy ra t/g EAC~t/g FBC
=>CE/CF=CA/CB
=>CE.CB=CF.CA
b)xét t/g ABC và t/g DBA
góc BAC= góc ADB= 900
góc ABC: chung
Suy ra t/g ABC~t/g DBA
ta có CE/CF=IE/IF(câu b)
a: Xet ΔCEA vuông tại E và ΔCFB vuông tại F có
góc ACE=góc BCF
=>ΔCEA đồng dạng với ΔCFB
=>CE/CF=CA/CB
=>CE*CF=CA*CB
b: CA/CB=IA/IB
Xét ΔIAE vuông tại E và ΔIBF vuông tại F có
góc AIE=góc BIF
=>ΔIAE đồg dạng với ΔIBF
=>IA/IB=IE/IF=CA/CB=CE/CF
c: Xét ΔCAB vuông tại A có AD là đường cao
nên CA^2=CD*CB
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
=>BA=6cm