K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

a, Sửa: AB=8(cm)

Áp dụng PTG: \(BC=\sqrt{AC^2-AB^2}=6\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}BK=\dfrac{AB\cdot BC}{AC}=4,8\left(cm\right)\\AK=\dfrac{AB^2}{AC}=6,4\left(cm\right)\end{matrix}\right.\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AK\cdot AC=AB^2\\AH\cdot AM=AB^2\end{matrix}\right.\Leftrightarrow AK\cdot AC=AH\cdot AM\)

c, Đề sai

28 tháng 6 2021

Chữ chen chít chữ hi vọng bạn đọc ra heheundefined

19 tháng 7 2021

Dạ em cảm ơn nhiềuu

a: AB=2AC

AB^2/AC^2=BH/HC

=>BH/HC=2^2=4

=>BH=4HC

AH^2=HB*HC

=>4HC^2=a^2

=>HC=a/2

=>BH=4*a/2=2a

BC=2a+a/2=5/2*a

\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)

\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)

b: AM=BC/2=5/4a

MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a

 

a: Ta có: \(AB=\dfrac{2}{3}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)

\(\Leftrightarrow HB=\dfrac{4}{9}HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)

\(\Leftrightarrow HC^2=324\)

\(\Leftrightarrow HC=18\left(cm\right)\)

\(\Leftrightarrow HB=8\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=50(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay BH=18(cm)

Ta có: ΔBAC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(MB=MC=\dfrac{BC}{2}=25\left(cm\right)\)

12 tháng 10 2023

loading...  loading...  loading...  

6:

a: AB^2=BH*BC

=>BH(BH+6,4)=6^2

=>BH=3,6cm

b: AC=căn 6,4*10=8cm