K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2023

loading...

Gọi độ dài đoạn BH là: \(x\) ( cm) ; \(x\) > 0; AC > AB nên  \(x\) < CH

Xét tam giác vuông HAB vuông tại H theo pytago ta có:

AB2 = HA2 + HB2 = 9,62 + \(x^2\) = 92,16 + \(x^2\)

Xét tam giác vuông AHC vuông tại H theo pytago ta có:

AC2 = HA2 + HC2 = 9,62 + (\(20-x\))2 = 92,16 + 400 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(x\) + \(x^2\)

Xét tam giác vuông ABC vuông tại A theo pytago ta có:

AC2 + AB2 = BC2

492,16  - 40\(x\) + \(x^2\) + 92,16 + \(x^2\) = 202

(\(x^2\) + \(x^2\)) - 40\(x\) + (492,16 + 92,16) - 400 = 0

2\(x^2\) - 40\(x\) + 584,32 - 400 = 0

2\(x^2\)- 40\(x\) + 184,32 =0

\(x^2\) - 20\(x\) + 92,16 = 0

△' = 102 - 92,16 = 7,84 > 0

\(x\)1 =  -(-10) + \(\sqrt{7,84}\) =  12,8 ⇒ CH = 20 - 12,8 = 7,2 < BH  (loại )

\(x_2\) = -(-10) - \(\sqrt{7,84}\) = 7,2 ⇒ CH = 20 - 7,2 = 12,8 (thỏa mãn)

Thay \(x_2\) = 7,2 vào biểu thức: AB2 = 92,16 + \(x^2\) = 92,16 + 7,22 = 144 

⇒AB = \(\sqrt{144}\) = 12 

Thay \(x_2\) = 7,2 vào biểu thức: AC2 = 492,16 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(\times\) 7,2 + 7,22 = 256

AC = \(\sqrt{256}\) = 16

Kết luận AB = 12 cm; AC = 16 cm