Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BHI và tam giác ABI:
BHI = ABI (=90o)
HBI = BAI ( cùng phụ ABH)
=> Tg BHI ~ tg ABI (g.g)
=> \(\frac{IH}{BI}\)= \(\frac{BI}{IA}\)
=> BI2 = IH.IA (1)
Xét tam giác BCD có:
IH // CD (cùng vuông góc BC)
H trđ BC ( tam giác ABC cân tại Acó AH là dg cao => AH là dg trung tuyến)
=> I trđ BD => BI = ID (2)
Từ (1), (2) => ID2 = IH.IA (dpcm)
b) Ta có: DCK = CBK ( cùng phụ BCK)
Mà BAH = CBK (cmt)
=> DCK = BAH
Xét tg CKD và tg ABI:
DCK = BAI (cmt)
CKD = ABI ( =90o)
=> Tg CKD ~ tg ABI ( g.g)
"Còn NC = NK mình nhìn mắt thường còn chưa thấy nó bằng nhau lun á"
a) Tg ABC cân tại A có AH vuông BC (gt)
=> BH=HC
- Tg BDC có :
BH=HC (cmt)
HI//CD (cùng vuông BC)
=> BI=ID (đường TB)
- Xét tg ABI vuông tại B, đường cao BH có :
IH.IA=BI2 (htl)
Mà BI=ID (cmt)
=> ID2=IH.IA
b) Xét tg CKD và ABI có :
\(\widehat{CKD}=\widehat{ABI}=90^o\)
\(\widehat{AIB}=\widehat{CDK}\)(AI//CD)
=> Tg CDK~ABI (g.g)
\(\Rightarrow\frac{CK}{AB}=\frac{KD}{BI}\)
=> CK.BI=KD.AB (1)
Có : CK//AB\(\Rightarrow\frac{NK}{AB}=\frac{DK}{DB}\left(Talet\right)\)
=> NK.DB=AB.DK (2)
-Từ (1) và (2) => CK.BI=NK.DB=NE.2BI
=> CK=2NK
\(\Rightarrow NK=NC=\frac{CK}{2}\left(đccm\right)\)
#H
Giải thích các bước giải:
a.Ta có AK⊥CK,AH⊥CHAK⊥CK,AH⊥CH
→ˆAKC+ˆAHC=90o+90o=180o→AKC^+AHC^=90o+90o=180o
→A,H,C,K→A,H,C,K thuộc đường tròn đường kính AC
b. Vì ADAD là đường kính của (O)
→AB⊥BD→AB⊥BD
Mà BH⊥AD→AB2=AH.ADBH⊥AD→AB2=AH.AD
c. Vì BC⊥AD→B,CBC⊥AD→B,C đối xứng qua AD
→ˆABC=ˆACB→ABC^=ACB^
Mà AMCBAMCB nội tiếp (O)→ˆKMC=ˆABC(O)→KMC^=ABC^
→ˆNMK=ˆAMB=ˆACB=ˆABC=ˆKMC→NMK^=AMB^=ACB^=ABC^=KMC^
Xét 2 tam giác vuông ΔMKNΔMKN và ΔMKCΔMKC có:
KMKM chung
ˆNMK=ˆKMCNMK^=KMC^ (cmt)
⇒ΔMKN=ΔMKC⇒ΔMKN=ΔMKC (cạnh góc vuông-góc nhọn)
⇒KN=KC⇒AK⇒KN=KC⇒AK vừa là đường cao vừa là trung tuyến ΔANCΔANC
⇒ΔANC⇒ΔANC cân đỉnh AA.
d. Vì ΔACNΔACN cân tại A →AN=AC→AN=AC
Mà B,C đối xứng qua AD
→AC=AB→AN=AB→ΔABN→AC=AB→AN=AB→ΔABN cân đỉnh AA
Lấy E là trung điểm BN→AE⊥BN→AE⊥BN
→E→E là trung điểm BN
→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22
Dấu = xảy ra khi AE=BE→ˆABE=45o→ˆABM=45oAE=BE→ABE^=45o→ABM^=45o