Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xets ΔCAH có
I là trung điểm của CA
IF//AH
=>F là trug điểm của CH
Xét ΔECH có
EF vừa la đường cao, vừa là trung tuyến
=>ΔECH cân tại E
Xet ΔICH có
IF vừalà đường cao, vừa là trung tuyến
=>ΔICH cân tại I
Xét ΔIHE va ΔICE có
IH=IC
HE=CE
IE chung
=>ΔIHE=ΔICE
=>góc IHE=90 độ
b: Xet ΔIHE vuông tại H và ΔBHA vuông tại H có
góc HIE=góc HBA(=góc FIC)
=>ΔIHE đồng dạng với ΔBHA
=>HI/HB=HE/HA
=>HI/HE=HB/HA
=>ΔHIB đồng dạng với ΔHEA
\(\Delta BHA\sim\Delta AHC\left(1\right):\widehat{AHB}=\widehat{AHC}=90,\widehat{ABH}=\widehat{HAC}\) ( cộng với góc BAH đều =90)
\(\Delta AHC\sim\Delta ICE\left(2\right):\widehat{AHC}=\widehat{ICE}=90,\widehat{HAC}=\widehat{CIE}\) ( so le trong, EI//AH cùng vuông góc BC)
Ta có IF vuông góc BC và HI=IC suy ra IE là đ/trung trực HC suy ra : \(\Delta ICE=\Delta IHE\left(IC=IH,HE=CE,chungIE\right)\left(3\right)\)
Từ (1),(2) và (3) suy ra ĐPCM
b/Từ (1) và ĐPCM ở câu a suy ra \(\Delta BHA\sim\Delta IHE\)( bắc cầu)
\(\Rightarrow\frac{BH}{HI}=\frac{AH}{HE}\Leftrightarrow\frac{BH}{AH}=\frac{HI}{HE}\)
Ta xét tgiac BHI và AHE có
\(\widehat{AHE}=\widehat{BHI}\)( đều =\(\widehat{AHI}+\widehat{AHB}=\widehat{AHI}+\widehat{IHE}=\widehat{AHI}+90\))
\(\frac{BH}{AH}=\frac{HI}{HE}\)
Suy ra ĐPCM
c/
Mình cảm ơn! Tớ thấy câu a làm bắc cầu thì hơi dài :> tớ thấy làm TH g-g sẽ ngắn hơi haha :V cảm ơn cậu
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC