K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Từ O1 kẻ O1H vuông góc với O2C tại H. Vì R2 > R1 nên ta được O1BCH là hình chữ nhật

và : O2H = R2 - R1 = 2 

\(cos\widehat{O_1O_2H}=\frac{O_2H}{O_1O_2}=\frac{2}{8}=\frac{1}{4}\Rightarrow\widehat{O_1O_2H}=\alpha\)(Bạn bấm máy tính để tìm giá trị góc này, còn mình đặt là \(\alpha\)cho dễ nhìn)

\(\Rightarrow\widehat{BO_1O_2}=180^o-\alpha\)(BO1 // CO2)

\(AB=\sqrt{2R^2_1-2R_1^2.cos\left(180^o-\alpha\right)}=m\)

\(AC=\sqrt{2R_2^2-2R_2^2.cos\alpha}=n\)

Gọi \(S_1\) và \(S_2\) lần lượt là diện tích hình quạt \(O_1AB\) và \(O_2AC\) thì ta có : 

\(S_1=\frac{\pi.R_1^2.\left(180^o-\alpha\right)}{360^o}\) ; \(S_2=\frac{\pi.R_2^2.\alpha}{360^o}\)

\(S_{\Delta O_1AB}=\frac{1}{2}.R_1^2.sin\left(90^o-\alpha\right)\)\(S_{\Delta O_2AC}=\frac{1}{2}R_2^2.sin\alpha\)

Diện tích hình viên phân giới hạn bởi AB là : \(S'=S_1-S_{\Delta O_1AB}=x\)

Diện tích hình viên phân giới hạn bởi AC là : \(S''=S_2-S_{\Delta O_2AC}=y\)

Diện tích tam giác ABC nằm ngoài cả hai đường tròn đã cho là : 

\(S_{ABC}-S'-S''=\frac{1}{2}m.n-x-y\)

5 tháng 11 2016

HÌNH VẼ ĐÂY :


O1 O2 H B C A

11 tháng 4 2020

Vẽ đường cao AH của \(\Delta\)ABC

Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)

Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC

Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)

\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)

\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)

Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:

\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)

Do đó: 

\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)

Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)

2 tháng 1 2024

 Gọi Q là giao điểm của PA và (O2). Do \(\widehat{O_1AP}=\widehat{O_1PA}=\widehat{O_2PQ}=\widehat{O_2QP}\) nên O1A//O2Q

 Mặt khác, \(BC\perp O_1A\) (vì BC là tiếp tuyến tại A của (O1) nên \(BC\perp O_2Q\)

 \(\Rightarrow\) Q là điểm chính giữa của cung nhỏ BC 

 \(\Rightarrow\) PQ là tia phân giác \(\widehat{BPC}\) \(\Rightarrow\) đpcm