Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

a, xét tam giác ACH và tam giác KCH có : CH chung
góc AHC = góc KHC = 90
AH = HK do H là trđ của AK (gt)
=> tam giác ACH = tam giác KCH (2cgv)
b, xét tam giác AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)
BE= EC do E là trđ của BC (GT)
AE = ED do E là trđ của AD (gt)
=> tam giác AEC = tam giác DEB (c-g-c)
=> BD = AC (đn)
tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)
=> BD = CK (tcbc)
c, xét tam giác AEH và tam giác KEH có: EH chung
AH = HK (câu a)
góc AHE = góc KHE = 90
=> tam giác AEH = tam giác KEH (2cgv)
=> góc AEH = góc KEH mà EH nằm giữa EA và EK
=> EH là phân giác của góc AEK (đn)

Hình bạn tự vẽ nha
a,
Xét tam giác AHB :
Ta có góc B =60° (gt)
AH vuông góc BC(gt)
=>góc AHB=90°
=>tam giác AHB vuông tại H
=>sđ góc BAH=180°-(góc B+góc H)
= 180°-(60°+90°)=30°
b,Xét tam giác AHI và tam giác ADI:
Do I là trung điểm của DH
Nên HI=HD
AH=AD(gt)
Cạnh AI cạnh chung
=> tam giác AHI=tam giác ADI(c.c.c)
c,
Do AH=AD (gt)
=>tam giác AHD cân tại A
=> AI là đường phân giác,cũng là đường cao của tam giác AHD
=>góc HAK=góc DAK(do AI kéo dài cắt BC tại K)
Cạnh AK: cạnh chung của tam giác AHK và tam giác ADK
=> tam giác AHK=tam giác ADK(c.g.c) (1)
Từ (1)=>góc AHK=góc ADK=90°
=>góc BAC=góc ADK=90°
Vậy 2 đường thẳng BA và KD cùng vuông góc với đường thẳng AC
=>AB//DK(đpcm)
a: Xét ΔDBK và ΔDHF có
DB=DH
\(\widehat{BDK}=\widehat{HDF}\)
DK=DF
Do đó: ΔDBK=ΔDHF
Suy ra: \(\widehat{DBK}=\widehat{DHF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AH//BK
b: Xét ΔHAB có
F là trung điểm của HA
D là trung điểm của HB
Do đó: FD là đường trung bình của ΔHAB
Suy ra: FD//AB
hay FK//AB
c ơi đường trung bình là gì vậy ạ, cái này mk chưa học á :'(