Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a, xét tgABH và tg CAH có
\(\widehat{AHB}=\widehat{CHA}=90\)
\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với góc BAH)
suy ra chúng đồng dạng theo g.g
b, VÌ tgABH đồng dạng tg CAH
suy ra \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{2BF}{2AE}=\frac{BF}{AE}\)
suy ra AB.AE=AC.BF
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE
a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có
góc HAI chung
=>ΔAHI đồng dạng với ΔACH
Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có
góc HAI=góc CHI
=>ΔAHI đồng dạng với ΔHCI
b: Xet ΔIHC có IM/IH=IK/IC
nên MK//HC
=>MK vuông góc AH
Xet ΔAHK có
KM,HI là đường cao
KM cắt HI tại M
=>M là trực tâm
=>AM vuông góc HK tại N
=>MN là đường cao của ΔHMK
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
k minh voi minh it diem qua
k cho mk nx