Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo hệ thức lượng trong tam giác vuông ta có :
\(AC^2=HC.BC\)
\(AB^2=HB.BC\) chia các vế vs nhau ta được : \(\frac{AC^2}{AB^2}=\frac{HC}{HB}\)=> \(\frac{HC}{HB}=\left(\sqrt{2}\right)^2=2\)
Ta có : HC = HB + 2 =>\(\frac{HB+2}{HB}=2\)=> HB = 2
=> HC = 2 + 2 = 4 => BC = HB + HC = 2 + 4 = 6
\(AB^2=2.6=12\)=> AB = \(\sqrt{12}=2\sqrt{3}\)
\(\frac{AC}{AB}=\sqrt{2}\)=> \(\frac{AC}{2\sqrt{3}}=\sqrt{2}\)=> AC = \(2\sqrt{6}\)
bạn tham khảo : https://hoc24.vn/hoi-dap/question/477209.html
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AC^2=HC\cdot BC\\AB^2=HB\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{HC}{HB}=\left(\dfrac{AC}{AB}\right)^2=2\)
b: HC/HB=2
nên HC=2HB
HC-HB=2
nên 2HB-HB=2
=>HB=2
=>HC=4
=>BC=6
\(AB=\sqrt{2\cdot6}=2\sqrt{3}\)
\(AC=\sqrt{4\cdot6}=2\sqrt{6}\)