K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

                                 Giải : 

Ta có hình vẽ :

A B C H D E

a ) Ta có :

+ ) \(AH^2=BH.CH=9.16=144cm^2\)

\(\Rightarrow AH=12cm\)

+ ) \(AB^2=BH.BC=9.25=225cm^2\)

\(\Rightarrow AB=15cm\)

+ ) \(AC^2=CH.BC=16.25=400cm^2\)

\(\Rightarrow AC=20cm\)

b ) Chứng minh được tứ giác ADHE là hình chữ nhật

c  ) Ta có :

+ ) \(HD.AB=HA.HB\)

\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)

+ ) \(HE.AC=HA.HC\)

\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)

\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)

\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)

4 tháng 10 2017

áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12  , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20       ADHE là hình chữ nhật vi có 3 góc=90độ      áp dụng hệ thức lượng ta tính được AD và DH 

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

26 tháng 3 2017

a) + AH2 = BH.CH = 9.16 = 144 AH = 12cm

+ AB2 = BH. BC = 9.25 AB  = 15cm

+ AC2 =  CH.BC = 16.25 AC = 20cm  

b) Chứng minh được tứ giác ADHE là hình chữ nhật  

c) +HD.AB = HA.HB HD = HA.HB/AB= 12.9/15 = 7,2cm

+HE.AC = HA.HC HE = HA.HC /AC = 12.16/20 = 9,6cm

+ Chu vi ADHE:  (HD + HE ).2 = (7,2 + 9,6).2 = 33,6(cm)  

 + SADHE = HD.HE = 7,2. 9,6  =  69,12(cm2)  



 

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>DE=AH=6cm

b: Gọi O là giao của AH và DE

=>O là trung điểm chung của AH và DE
mà AH=DE

nên OA=OH=OD=OE

Ta có: góc OHD+góc MHD=90 độ

góc ODH+góc MDH=90 độ

mà góc OHD=góc ODH

nên góc MHD=góc MDH

=>ΔMHD cân tại M và góc MDB=góc MBD

=>ΔMBD cân tại M

=>MH=MB

=>M là trung điểm của HB

Cm tương tự, ta được N là trung điểm của HC

=>MN=1/2BC

d: \(AD\cdot AB=AH^2\)

\(AE\cdot AC=AH^2\)

Do đó: \(AD\cdot AB=AE\cdot AC\)

3 tháng 8 2016

Bài này làm rồi mà

3 tháng 8 2016

bài khác

5 tháng 8 2016

A B C H D E

a) +) Vì ​\(HD\perp AB=\left\{D\right\}\) ​(vì H là hình chiếu)\(\Rightarrow\)Góc ADH = 90

   \(HE\perp AC=\left\{E\right\}\) (vì H là hình chiếu) ==> Góc AEH = 90

  +) Xét tg ADHE có: Góc ADH=AEH=90 (cmt); DAE=90(vì tam giác ABC vuông ở A) ==> tg ADHE là hcn(dhnb)

b) +) Theo HTL trong tam giác vuông ta có \(AH^2=BH.HC\Leftrightarrow AH=\sqrt{4.9}=6cm\)      

mà tg ADHE là hcn(cma)==> AH=DE=6cm (t/c hcn)

c) Ta có tam giac ADC đồng dạng vs tam giác ABE(g-g) \(\Rightarrow\frac{AD}{AE}=\frac{AC}{AB}\Leftrightarrow AD.AB=AE.AC\left(dpcm\right)\)

23 tháng 8 2017

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

bái này khó lắm

nếu làm đc cx rất dài

Vậy nha

2 tháng 8 2016

Vẽ hơi xấu

a)Xét tứ giác ADHE có:^ADH=90(gt)

                                    ^DAE=90(gt)

                                    ^AEH=90(gt)

=>Tứ giác ADHE là hình chữ nhật

b)Vì ADHE là hình chữ nhật(cmt)

=>DE=AH

Áp dụng hệ thức liên quan tới đường cao mta có:

 AH^2=BH.CH=4.9=36

=>AH=6

=>AH=DE=6

c)Gọi O là giao điểm của DE và AH

Vì ADHE là hình chữ nhật 

=>OA=OD

=>ΔOAD cân tại O

=>^OAD=^ODA              (1)

Ta có:^DAH=^ACB(cùng phụ với ^HAC)         (2)

Từ (1) (2)

=>^ODA=^ACB

Xét ΔADE và ΔACB có:

    ^A:góc chung

   ^EDA=^BCA(cmt)

=>ΔADE~ΔACB(g.g)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

=>AD.AB=AC.AE

 

 

2 tháng 8 2016

Ta có: ADHE là hình chữ nhật => DE =AH 
mà AH^2 = HB.HC = 36 
=> DE=AH =9 

b] 
Do ADHE là h.c.n => ^ADE = ^AHE 
mà ^AHE = ^ACH (góc có cạnh t/ư vuông góc) 
=> ^ADE = ^ACB (*) 
=> tg ADE ~ tg ABC (do * và có chung góc vuông) 
=> AD/AE = AC/AB 
=> AD.AB = AC.AE 

c] 
Ta có ^MDH = ^ADE (do cùng phụ ^HDE) 
mà ^ADE = ^ACB = ^BHD (theo cm trên và DH//AC) 
=> tg DMH cân => BM=DM=MH