Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)
\(\Leftrightarrow AH^2=\dfrac{144}{25}\)
hay \(AH=\dfrac{12}{5}=2.4\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)
hay BH=1,8
Vậy: AH=2,4; BH=1,8
b) Xét (A;AH) có
AH là bán kính
CH⊥AH tại H(gt)
Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
hay CB là tiếp tuyến của (A;AH)(đpcm)
c)
1) Xét (A) có
CH là tiếp tuyến có H là tiếp điểm(cmt)
CK là tiếp tuyến có K là tiếp điểm(gt)
Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)
Xét (A) có
AH là bán kính
BH⊥AH tại H(gt)
Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)
Ta có: BH+CH=BC(H nằm giữa B và C)
mà BH=BI(cmt)
và CH=CK(cmt)
nên BC=BI+CK(đpcm)
2) Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAI}=2\cdot\widehat{HAB}\)
Xét (A) có
CK là tiếp tuyến có K là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(cmt)
Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAK}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)
mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)
và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)
nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
hay K,A,I thẳng hàng(đpcm)
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: ΔAHI cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAI
Xét ΔAHB và ΔAIB có
AH=AI
\(\widehat{HAB}=\widehat{IAB}\)
AB chung
Do đó: ΔAHB=ΔAIB
=>\(\widehat{AHB}=\widehat{AIB}=90^0\)
=>BI là tiếp tuyến của (A;AH)
c:
\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{HAB}\)
\(\widehat{KAH}+\widehat{HAI}=180^0\)(hai góc kề bù)
=>\(\widehat{KAH}+2\cdot\widehat{BAH}=180^0\)
=>\(\widehat{KAH}=180^0-2\cdot\widehat{BAH}=2\left(90^0-\widehat{BAH}\right)=2\cdot\widehat{CAH}\)
=>AC là phân giác của góc KAH
Xét ΔAHC và ΔAKC có
AH=AK
\(\widehat{HAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAHC=ΔAKC
=>CH=CK
CH+HB=CB
mà CH=CK và BH=BI
nên CK+BI=BC
A B C H E F I 1
Vì BE , BH là các tiếp tuyến của (O)
=> AB là phân giác ^EAH
=> \(\widehat{BAH}=\frac{\widehat{EAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{HÀF}}{2}\)
\(\Rightarrow\widehat{BAH}+\widehat{CAH}=\frac{\widehat{EAH}+\widehat{HAF}}{2}\)
\(\Rightarrow\frac{\widehat{EAH}+\widehat{HÀF}}{2}=90^o\)
\(\Rightarrow\widehat{EAH}+\widehat{HAF}=180^o\)
=> E , A , F thẳng hàng
=> EF là đường kính (A)
=> A là trung điểm EF
VÌ BE , CF là 2 tiếp tuyến của (A)
=> \(BE\perp EF\)và \(CF\perp EF\)
\(\Rightarrow BE\)// \(CF\)
=> BEFC là hình thang đáy BE , CF
Xét hình thang BEFC có A là trung điểm EF
I là trung điểm BC
=> AI là đường trung bình hình thang BEFC
=> AI // EF
Mà \(EF\perp FC\)(tiếp tuyến)
=> \(AI\perp AF\)
=> \(\Delta AIF\)vuông tại A
=> \(sinF_1=\frac{AI}{IF}\)
Giờ cần tính AI và IF nữa là xong !
Áp dụng định lí Py-ta-go vào \(\Delta\)ABC vuông tại A
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow3^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=45\)
\(\Leftrightarrow BC=3\sqrt{5}\)(Do BC > 0)
Vì \(\Delta\)ABC vuông tại A có AI là đường trung tuyến
=> \(AI=\frac{BC}{2}=\frac{3\sqrt{5}}{2}\)
Áp dụng hệ thức lượng vào \(\Delta\)ABC vuông tại A đường cao AH
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(=\frac{1}{3^2}+\frac{1}{6^2}\)
\(=\frac{5}{36}\)
\(\Rightarrow AH^2=\frac{36}{5}\)
\(\Rightarrow AF^2=\frac{36}{5}\)(Do AH = À vì cùng là bán kính (A) )
Áp dụng định lí Py-ta-go vào tam giác AIF vuông tại A
\(AI^2+AF^2=IF^2\)
\(\Rightarrow\left(\frac{3\sqrt{5}}{2}\right)^2+\frac{36}{5}=IF^2\)
\(\Rightarrow IF^2=\frac{369}{20}\)
\(\Rightarrow IF=\sqrt{\frac{369}{20}}=\frac{3\sqrt{205}}{10}\)
Khi đó \(sinF_1=\frac{AI}{IF}=\frac{3\sqrt{5}}{2}:\frac{3\sqrt{205}}{10}=\frac{5}{\sqrt{41}}\)
Vậy \(sinF_1=\frac{5}{\sqrt{41}}\)
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K
a: BC=5
\(AH=\dfrac{3\cdot4}{5}=2.4\)
\(BH=\dfrac{9}{5}=1.8\)
b: Vì BH vuông góc với HA tại H
nên CB là tiếp tuyến của (A;AH)