Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)
\(\Leftrightarrow AH^2=\dfrac{144}{25}\)
hay \(AH=\dfrac{12}{5}=2.4\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)
hay BH=1,8
Vậy: AH=2,4; BH=1,8
b) Xét (A;AH) có
AH là bán kính
CH⊥AH tại H(gt)
Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
hay CB là tiếp tuyến của (A;AH)(đpcm)
c)
1) Xét (A) có
CH là tiếp tuyến có H là tiếp điểm(cmt)
CK là tiếp tuyến có K là tiếp điểm(gt)
Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)
Xét (A) có
AH là bán kính
BH⊥AH tại H(gt)
Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)
Ta có: BH+CH=BC(H nằm giữa B và C)
mà BH=BI(cmt)
và CH=CK(cmt)
nên BC=BI+CK(đpcm)
2) Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAI}=2\cdot\widehat{HAB}\)
Xét (A) có
CK là tiếp tuyến có K là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(cmt)
Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAK}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)
mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)
và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)
nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
hay K,A,I thẳng hàng(đpcm)
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: ΔAHI cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAI
Xét ΔAHB và ΔAIB có
AH=AI
\(\widehat{HAB}=\widehat{IAB}\)
AB chung
Do đó: ΔAHB=ΔAIB
=>\(\widehat{AHB}=\widehat{AIB}=90^0\)
=>BI là tiếp tuyến của (A;AH)
c:
\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{HAB}\)
\(\widehat{KAH}+\widehat{HAI}=180^0\)(hai góc kề bù)
=>\(\widehat{KAH}+2\cdot\widehat{BAH}=180^0\)
=>\(\widehat{KAH}=180^0-2\cdot\widehat{BAH}=2\left(90^0-\widehat{BAH}\right)=2\cdot\widehat{CAH}\)
=>AC là phân giác của góc KAH
Xét ΔAHC và ΔAKC có
AH=AK
\(\widehat{HAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAHC=ΔAKC
=>CH=CK
CH+HB=CB
mà CH=CK và BH=BI
nên CK+BI=BC
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
c: BD+CE
=BH+CH
=BC
d: AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)
=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)
=>E,A,D thẳng hàng
a, Vì CM là tiếp tuyến của (A)
=> \(CM\perp AM\)
=> ^CMA = 90o
=> M thuộc đường tròn đường kính AC
Vì ^CHA = 90o
=> H thuộc đường tròn đường kính AC
Do đó : M và H cùng thuộc đường tròn đường kính AC
hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC
b, Vì AM = AH ( Bán kính)
CM = CH (tiếp tuyến)
=> AC là trung trực MH
=> \(AC\perp MH\)tại I
Xét \(\Delta\)AMC vuông tại M có MI là đường cao
\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)
c, Vì CM , CH là tiếp tuyến của (A)
=> AC là phân giác ^HAM
=> ^HAC = ^MAC
Mà ^HAC + ^HAB = 90o
=> ^MAC + ^HAB = 90o
Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)
=> ^BAD + 90o + ^CAM = 180o
=> ^BAD + ^CAM = 90o
Do đó ^BAD = ^BAH (Cùng phụ ^CAM)
Xét \(\Delta\)BAD và \(\Delta\)BAH có:
AB chung
^BAD = ^BAH (cmt)
AD = AH (Bán kính (A) )
=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)
=> ^ADB = ^AHB = 90o
\(\Rightarrow BD\perp AD\)
=> BD là tiếp tuyến của (A)
Làm đc đến đây thôi :(
a: BC=5cm
AH=2,4cm
b: Xét (A) có
CE là tiếp tuyến
CH là tiếp tuyến
Do đó: AC là tia phân giác của góc EAH(1)
Xét (A) có
BH là tiếp tuyến
BD là tiếp tuyến
Do đó: AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra E,A,D thẳng hàng