Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a) Xét tứ giác EHFA có :
BAC = 90*
HF \(\perp\)AC(gt)
HE\(\perp\)AB (gt)
=> EHFA là hình chữ nhật
=> AH = EF
b) Vì EHFA là hình chữ nhật (cmt)
=> EH//AF , EH= AF
Mà E là trung điểm PH
=> PE = EH
=> PE = AF
Xét tứ giác PEFA có :
PE = AF
PE// AF ( EH//AF , E\(\in\)PH )
=> PEFA là hình bình hành
d) Vì PEFA là hình bình hành (cmt)
=> FE//PA (1)
Ta có : HF = FQ (gt)
MÀ HF = EA
=> FQ = EA
Xét \(\Delta HAQ\)có :
AF là trung trực
=> \(\Delta HAQ\) cân tại A
=> AH = AQ
Mà AH = EF (cmt)
=> EF = AQ
Xét tứ giác EFQA ta có :
EF = AQ
EA = FQ
=> EFQA là hình bình hành
=> EF// AQ(2)
(1)(2) => P,A,Q thẳng hàng
1: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//BC
hay DM//BH
2: Xét ΔABH có
D là trung điểm của AB
DM//BH
Do đó: M là trung điểm của AH
a: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(HB=\sqrt{16^2-12^2}=\sqrt{256-144}=\sqrt{112}=4\sqrt{7}\left(cm\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét ΔDHC có
CA,DE là các đường trung tuyến
CA cắt DE tại F
Do đó: F là trọng tâm của ΔDHC
Xét ΔDHC có
F là trọng tâm
M là trung điểm của CD
Do đó: H,F,M thẳng hàng
c: ΔCHD vuông tại H
mà HM là đường trung tuyến
nên \(HM=\dfrac{1}{2}CD\)
Xét ΔDHC có
HM là đường trung tuyến
F là trọng tâm
Do đó: \(HF=\dfrac{2}{3}HM=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot CD=\dfrac{1}{3}CD\)