Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tính độ dài các cạnh AM, BN, CE?
b/ Tính diện tích Δ ABC
Dưới đây là ý a tớ đã làm ( bạn tự vẽ hình nhé )
a/ Xét ΔABC có góc A=90°
mà AM là trung tuyến của ΔABC
=> AM=BC/2=13/2=6,5(cm)
Xét ΔABC có góc A = 90°
Áp dụng đ/lí Py-ta-go có:
BC^2=AE^2+AC^2
=> AC^2=BC^2-AE^2
AC^2=13^2-5^2=144 => AC=√144=12(cm)
Xét ΔABN có góc A=90°
mà BN là trung tuyến của Δ ABC
=> BN=AC/2=12/2=6(cm)
BN^2=AB^2+AN^2
BN^2=5^2+6^2
BN^2=61 => BN= √61(cm)
Xét ΔACE có góc A=90 °
AC=12cm, AE=AB/2=2,5(cm) [CE là trung tuyến]
Áp dụng đ/lí Py-ta-go có:
CE^2=AC^2+AE^2
CE^2=12^2+2,5^2
CE^2= 144 + 6,25
=> CE^2=150,25 => CE=√ 150,25 (cm)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a, + △ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6
+ △AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=5^22+66
2=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5
b,+ SABC=AB.AC:2=12.5:2=30
+ M là trung điểm BC nên BM=MC. Mà △OBM và △OCM có chung đường cao kẻ từ O nên SOBM=SOCM
+ N là trung điểm AC nên AN=NC. Mà △AON và △OCN có chung đường cao kẻ từ O nên SAON=SCON
+ E là trung điểm AB nên AE=EB. Mà △OAE và △OEB có chung đường cao kẻ từ O nên SOAE=SOEB
+ Ta có: SOBM+SOCM+SAON+SCON+SOAE+SOEB=SABC. Hay:
6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)
+Vậy SBOC=SOBM+SOCM=5.2=10 (cm2)
bai nay kho that day