K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 1 2022

\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=\widehat{ABC}=90^0-ACB=90^0-35^0=55^0\)

20 tháng 11 2023

loading...

3 tháng 3 2023

\(a,\overrightarrow{AB}=\left(2;10\right)\)

\(\overrightarrow{AC}=\left(-5;5\right)\)

\(\overrightarrow{BC}=\left(-7;-5\right)\)

\(b,\) Thiếu dữ kiện

\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)

\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.

17 tháng 9 2023

Ta có :

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Leftrightarrow BC^2=\dfrac{4}{9}BC^2+AC^2\)

\(\Leftrightarrow BC^2-\dfrac{4}{9}BC^2=AC^2\)

\(\Leftrightarrow\dfrac{5}{9}BC^2=AC^2\)

\(\Leftrightarrow BC^2=\dfrac{9}{5}AC^2=\dfrac{9}{5}.\left(12a\right)^2\)

\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{3}{\sqrt[]{5}}.12a=\dfrac{36a\sqrt[]{5}}{5}\)

\(\Rightarrow\left|\overrightarrow{AB}\right|=AB=\dfrac{2}{3}.\dfrac{36a\sqrt[]{5}}{5}=\dfrac{24a\sqrt[]{5}}{5}\)

15 tháng 10 2021

b: \(\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\dfrac{\overrightarrow{AC}}{2}\right|=\dfrac{5}{2}a\)

a: vecto AB=(-7;1)

vecto AC=(1;-3)

vecto BC=(8;-4)

b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)