Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi
a/ Xét tam giác ABC vuông tại A:
có AM là đường trung tuyến => AM = BM = MC
Xét tam giác ABM có:
BM=AM
=> tam giác ABM cân tại M
có góc ABM bằng 60 độ
=> tam giác ABM đều.
Ta có: BC= BM+MC mà BM=MC=AB = 12 cm
=> BC= 24 cm
b/ xét tứ giác ADME, ta có:
góc A=D=E=90 độ
=> tứ giác ADME là hình chữ nhật
ta có: DE=AM ( đường chéo trong hình chữ nhật ADME)
mà AM=12 cm (=BA)
=> DE=12cm
c/ ta có:
AB vuông góc với AC
EM vuông góc với AC
=> AB song song EM
mà BM=MC (AM là đường trung tuyến);
=> E là trung điểm AC (đường trung bình);
=> EM = 1/2 AB
=> MN=AB
xét tứ giác ABMN có
AB//MN (cmt)
MN=AB(cmt)
=> tứ giác ABMN là hình bình hành
có BN và AM là 2 đường chéo
mà 2 đường chéo cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm AM (đường chéo hình chữ nhât ADME);
=> 3 điểm B,O,N thẳng hàng