Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chứng minh: ΔABD = ΔEBD
Xét ΔABD và ΔEBD, có:
BD là cạnh huyền chung (gt)
Vậy ΔABD = ΔEBD (cạnh huyền – góc nhọn)
2) Chứng minh: ΔABE là tam giác đều.
ΔABD = ΔEBD (cmt)
AB = BE
mà góc B = 60 độ (gt)
Vậy ΔABE có AB = BE và góc 60 độ nên ΔABE đều.
3) Tính độ dài cạnh BC
Ta có (gt)
Góc C+B = 90 độ(ΔABC vuông tại A)
Mà BEA = góc B = 60 độ (ΔABE đều)
Nên góc EAC = góc C ΔAEC cân tại E
EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
a) Xét ΔABD,ΔEBD có :
BADˆ=BEDˆ(=90độ)
BD:Chung
ABDˆ=EBDˆ(BD là tia phân giác của BˆB^)
=> ΔABD=ΔEBD(cạnh huyền - góc nhọn) (*)
b) Từ (*) suy ra : AB=BE (2 cạnh tương ứng)
=> ΔABE cân tại B
Lại có : ABEˆ=60o (giả thiết)
Do đó : ΔABE là tam giác đều.
bài ca dao đã mượn hình ảnh “bầu và bí”. Đây là hai loại cây khác nhau nhưng có nhưng đặc điểm, môi trường sống giống nhau. Chúng cùng thuộc giống cây thân leo, thường được trồng chung một giàn. Hình ảnh cây bầu, cây bí chung một giànn ta rằng dù chúng có là loài khác nhau đi chăng nữa nhưng vẫn biết chia sẻ không gian, cùng nhau chung sống hòa thuận.
chịu................................................................................ ko hiểu
Bổ sung đề: \(\widehat{ABC}=60^0\)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)
nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)
Vậy: BC=10cm
Mình chỉ làm dc phần c thôi
c) Tam giác ABC vuông tại B
=>ABC+ACB=90 độ,
=>60 độ +ACB=90 độ
=>ACB=30 độ
Trong tam giác vuông, cạnh đối diện với góc 30 độ = 1/2 cạnh huyển
=>AB=1/2BC
=>5=1/2BC
=>BC=10
Vậy BC=10 cm
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(Hai cạnh tương ứng)
Xét ΔBAE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\left(gt\right)\)nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos\widehat{ABC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)
Vậy: BC=10cm