K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

Xét tam giác ABD và tam giác EBD có

      \(\widehat{ABD}\) = \(\widehat{EBD}\) (gt)

         AB = BE (gt)

           BD chung

\(\Delta\)ABD = \(\Delta\) EBD (c-g-c)

⇒AD = DE

⇒ \(\widehat{BAD}\) = \(\widehat{BED}\) = 900

\(\widehat{DEC}\) = 1800 - 900 = 900

Xét tam giác ADI và tam giác EDC có:

\(\widehat{DAI}\) = \(\widehat{DEC}\)  = 900 (cmt)

AD = DE (cmt)

AI = EC (gt)

⇒ \(\Delta\)ADI = \(\Delta\)EDC (c-g-c)

⇒ D1 = D4

Mà D2 + D3 + D4 = 1800

⇒ D1 + D2 + D3 = 1800

⇒ \(\widehat{IDE}\) = 1800

⇒ I;D;E thẳng hàng (đpcm)

 

 

 

 

 

 

 

 

22 tháng 12 2023

loading... Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠EBD

Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (cmt)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ DE ⊥ BC

Do AI = EC (gt)

AB = BE (gt)

⇒ BI = AI + AB = BE + EC = BC

∆BCI có:

BI = BC (cmt)

⇒ ∆BCI cân tại B

Mà BD là tia phân giác của ∠ABC

⇒ BD là tia phân giác của ∠IBC

⇒ BD là đường cao của ∆BCI

Lại có:

CA ⊥ AB (∆ABC vuông tại A)

CA ⊥ BI

⇒ CA là đường cao thứ hai của ∆BCI

⇒ ID là đường cao thứ ba của ∆BCI

⇒ ID ⊥ BC

Mà DE ⊥ BC (cmt)

⇒ I, D, E thẳng hàng

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng